• Title/Summary/Keyword: anisotropic materials

Search Result 546, Processing Time 0.029 seconds

Closed-form Green's functions for transversely isotropic bi-solids with a slipping interface

  • Yue, Zhong Qi
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.469-484
    • /
    • 1996
  • Green's functions are obtained in exact closed-forms for the elastic fields in bi-material elastic solids with slipping interface and differing transversely isotropic properties induced by concentrated point and ring force vectors. For the concentrated point force vector, the Green functions are expressed in terms of elementary harmonic functions. For the concentrated ring force vector, the Green functions are expressed in terms of the complete elliptic integral. Numerical results are presented to illustrate the effect of anisotropic bi-material properties on the transmission of normal contact stress and the discontinuity of lateral displacements at the slipping interface. The closed-form Green's functions are systematically presented in matrix forms which can be easily implemented in numerical schemes such as boundary element methods to solve elastic problems in computational mechanics.

Dynamic Responses in Orthotropic Media Due to Pulsating Line Source

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.1E
    • /
    • pp.70-75
    • /
    • 1998
  • The analysis of dynamic responses are carried out on several anisotropic systems due to buried pulsating line sources. These include infinite, semi-infinite spaces. The media possess orthotropic or higher symmetry. The load is in the from of a normal stress acting with parallel to symmetry axis on the plane of symmetry within the materials. The results are first derived for infinite media. Subsequently the results for semi-infinite are derived by using superposition of the solution in the infinite medium together with a scattered solution from the boundaries. The sum of both solutions has to satisfy stress free boundary conditions, thereby leading to the complete solutions. The solutions are simplified to the systems possessing of higher symmetry, such as orthotropic, transversely isotropic, cubic, and isotropic symmetry.

  • PDF

Optimal Design of Laminated Composite Beams with Open Cross Section (복합 적층 개단면 보의 최적설계)

  • 배하록;홍순호;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.309-316
    • /
    • 1999
  • Laminated composite plates are very useful in various fields of engineering where high strength-to-weight and stiffness-to-weight ratios are required. Design optimization of composite structures has gained importance in recent years as the engineering applications of fiber reinforced materials have increased and weight savings has become an essential design objective. However, due to the anisotropic material properties of laminated composite structure it is very difficult to analyze and design. In this study, numerical optimization technique together with the finite element method is used to find the optimum design of FRP. Various combination of fiber orientation for the laminate layers are investigated and several local optimum solutions are found.

  • PDF

Development and Application of Mueller Matrix Ellipsometry (Mueller Matrix Ellipsometry 제작 및 응용)

  • 방경윤;경재선;오혜근;김옥경;안일신
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.31-34
    • /
    • 2004
  • We develop Mueller-matrix spectroscopic ellipsometry based on dual compensator configuration. This technique is very powerful for measuring surface anisotropy in nano-scale, especially when materials show depolarization. Dual-rotating compensator configuration is adopted with the rotational ratio of 5:3 originally developed by Collins et al[1]. The instrument can provide 250-point spectra over the wavelength range from 230 nm to 820 nm in one irradiance waveform with minimum acquisition time of Tc=10 s. In this work, the results obtained in transmission modes are presented for the initial attempt. We present calibration procedures to diagnose the system from the utilized data collected in transmission mode without sample. We expect that the instrument will have important applications in thin films and surfaces that have anisotropy and inhomogeneity.

  • PDF

Observation of the Deformation-Induced Anisotropy in the Square-Die Extrusion Process (평금형 압출공정에 대한 변형이방성 예측 알고리즘의 적용)

  • 이창희;양동열;이용신
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.724-730
    • /
    • 2002
  • Due to extremely large reduction of area or extrusion ratio in ordinary production of extruded profiles, anisotropy is naturally induced by large severe deformation during the extrusion process. Therefore, the anisotropic properties play a great role in the post processing of extruded profiles, such as in bending. Moreover, undesirable deformation will be involved when the deformation-induced anisotropy is ignored. In order to observe the deformation-induced anisotropy of the thin-walled product, the proposed algorithm is applied to some chosen industrial extrusion processes. In the present work, the method for prediction of deformation-induced anisotropy employing the Barlats six-component yield potential to the rigid-plastic finite element method is proposed. The proposed algorithm is verified with the comparison to the crystallographic texture analysis, and then applied to the C-section extrusion process using a square die. The predicted anisotropy is then compared with the experimental and computational observations for validating the proposed algorithm.

Effect of Precured EPDM on the Property of Magneto-rheological Elastomer Based on NR/EPDM Blend

  • Na, Bokgyun;Chung, Kyungho
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.67-74
    • /
    • 2018
  • Magneto-rheological elastomers (MREs) are smart materials in which the inherent stiffness and damping properties can be changed by the influence of an external magnetic field. The magneto-rheological (MR) effect depends on the orientation characteristics of the dispersed magneto-responsible particles (MRPs) in the matrix. In this study, natural rubber (NR) and ethylene propylene diene rubber (EPDM) were blended and used as a matrix of an MRE. EPDM was pre-cured before blending with NR. The Mooney viscosity, curing characteristics, and mechanical properties were analyzed with various pre-curing conditions of EPDM and the NR/EPDM blend. The results show that excellent mechanical properties of the NR/EPDM blend-based MRE were obtained when the pre-curing time of EPDM was 60 min. The aging property of the NR-based MRE was improved by the introduction of pre-cured EPDM. Also, the anisotropic MRE showed a higher MR effect than that of the isotropic MRE.

Investigation of the Stress Distributions in a Transversely Isotropic Medium Containing a Spheroidal Cavity (구형 공동을 가진 횡 방향 등방성매체의 응력 분포에 관한 연구)

  • 이윤복;전종균
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.159-171
    • /
    • 1997
  • This study investigates the stress distribution in a transversely isotropic medium containing a spheroidal cavity where the medium is under uniaxial tension in z-direction in one case and pure shear in the plane of isotropy in another case. The technical approach used in this study combines exact analytical and numerical methods. The exact analytical method is based upon three potential functions taken in terms of the Legendre associated functions of the first and second kind. The numerical method is based upon the finite difference approach. Numerical results concerning the two loading conditions with five anisotropic materials are presented.

  • PDF

NUMERICAL ANALYSIS FOR CONDUCTION HEAT TRANSFER AND APPRAISAL OF PERFORMANCE INDICES IN LED MONITOR FOR LAPTOP COMPUTER (노트북 LED 영상장치 내부의 전도열전달 해석과 성능 지수 평가)

  • Park, I.S.;Sohn, C.H.;Son, D.H.;Baik, S.M.;Park, C.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.47-51
    • /
    • 2011
  • Dark Mura phenomena which can happen at the region with high temperature gradient in a Notebook LCD Monitor using LED light source has numerically been studied. The calculation was conducted under the nearly realistic conditions by considering the anisotropic thermal properties of materials and the real dimensions of each component. The two performance indices of LED monitor, i.e., the maximum temperature and the spacial gradient of temperature were examined for the various shapes, lengths and thickness of heat sink plate. Calculated results give more reasonable temperature distribution comparing with experimental results.

Elasto-plastic analysis using shell element considering geometric and material nonlinearities

  • Prasad, N. Siva;Sridhar, S.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.217-227
    • /
    • 1998
  • An elasto-plastic finite element procedure using degenerated shell element with assumed strain field technique considering both material and geometric nonlinearities has been developed. This assumes von-Mises yield criterion, von-Karman strain displacement relations and isotropic hardening. A few numerical examples are presented to demonstrate the correctness and applicability of the method to different kinds of engineering problems. From present study, it is seen that there is a considerable improvement in the displacement valuse when both material and geometric nonlinearities are considered. An example of the spread of plastic zones for isotropic and anisotropic materials has been illustrated.

The Poisson effect on the curved beam analysis

  • Chiang, Yih-Cherng
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.707-720
    • /
    • 2005
  • The bending stress formula that taking into account the transverse deformation is developed for plane-curved, untwisted isotropic beams subjected to loadings that result in deformations in the plane of curvature. In order to account the transverse Poisson contraction effect, a new constitutive relation between force resultants, moment resultants, mid-plane strains and deformed curvatures for a curved plate is derived in a $6{\times}6$ matrix form. This constitutive relation will provide the fundamental basis to the analyses of curved structures composing of isotropic or anisotropic materials. Then, the bending stress formula of a curved isotropic beam can be deduced from this newly developed curved plate theory. The stress predictions by the present analysis are compared to those by the analysis that neglected the Poisson contraction effect. The results show that the Poisson effect becomes more significant as the Poisson ratio and the curvature are getting larger.