• Title/Summary/Keyword: angular distribution

Search Result 342, Processing Time 0.029 seconds

Changes in the Recognition Rate of Kodály Learning Devices using Machine Learning (머신러닝을 활용한 코다이 학습장치의 인식률 변화)

  • YunJeong LEE;Min-Soo KANG;Dong Kun CHUNG
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.2 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • Kodály hand signs are symbols that intuitively represent pitch and note names based on the shape and height of the hand. They are an excellent tool that can be easily expressed using the human body, making them highly engaging for children who are new to music. Traditional hand signs help beginners easily understand pitch and significantly aid in music learning and performance. However, Kodály hand signs have distinctive features, such as the ability to indicate key changes or chords using both hands and to clearly represent accidentals. These features enable the effective use of Kodály hand signs. In this paper, we aim to investigate the changes in recognition rates according to the complexity of scales by creating a device for learning Kodály hand signs, teaching simple Do-Re-Mi scales, and then gradually increasing the complexity of the scales and teaching complex scales and children's songs (such as "May Had A Little Lamb"). The learning device utilizes accelerometer and bending sensors. The accelerometer detects the tilt of the hand, while the bending sensor detects the degree of bending in the fingers. The utilized accelerometer is a 6-axis accelerometer that can also measure angular velocity, ensuring accurate data collection. The learning and performance evaluation of the Kodály learning device were conducted using Python.

A Reflectance Normalization Via BRDF Model for the Korean Vegetation using MODIS 250m Data (한반도 식생에 대한 MODIS 250m 자료의 BRDF 효과에 대한 반사도 정규화)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.445-456
    • /
    • 2005
  • The land surface parameters should be determined with sufficient accuracy, because these play an important role in climate change near the ground. As the surface reflectance presents strong anisotropy, off-nadir viewing results a strong dependency of observations on the Sun - target - sensor geometry. They contribute to the random noise which is produced by surface angular effects. The principal objective of the study is to provide a database of accurate surface reflectance eliminated the angular effects from MODIS 250m reflective channel data over Korea. The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor has provided visible and near infrared channel reflectance at 250m resolution on a daily basis. The successive analytic processing steps were firstly performed on a per-pixel basis to remove cloudy pixels. And for the geometric distortion, the correction process were performed by the nearest neighbor resampling using 2nd-order polynomial obtained from the geolocation information of MODIS Data set. In order to correct the surface anisotropy effects, this paper attempted the semiempirical kernel-driven Bi- directional Reflectance Distribution Function(BRDF) model. The algorithm yields an inversion of the kernel-driven model to the angular components, such as viewing zenith angle, solar zenith angle, viewing azimuth angle, solar azimuth angle from reflectance observed by satellite. First we consider sets of the model observations comprised with a 31-day period to perform the BRDF model. In the next step, Nadir view reflectance normalization is carried out through the modification of the angular components, separated by BRDF model for each spectral band and each pixel. Modeled reflectance values show a good agreement with measured reflectance values and their RMSE(Root Mean Square Error) was totally about 0.01(maximum=0.03). Finally, we provide a normalized surface reflectance database consisted of 36 images for 2001 over Korea.

Exchange Bias Study by FMR Measurment (강자성 공명에 의한 Exchange Bias 연구)

  • Yoo, Yong-Goo;Park, Nam-Seok;Min, Seong-Gi;Yu, Seong-Cho
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.265-269
    • /
    • 2005
  • Exchange bias effect of a various layered thin films were studied by FMR measurment. In plane angular dependence of a resonance field distribution which measured by FMR was analysed as a combined effect of an unidirectional anisotropy and an uniaxial anisotropy. Exchange biased NiFe/IrMn, IrMn/NiFe/IrMn, and NiFe/IrMn/CoFe thin films showed larger unidirectional anisotropy field and uniaxial anisotropy field with compared to that of an unbiased NiFe single thin film. In case of NiFe/Cu/IrMn, the film with thick Cu layer exhibited a similar trend to the unbiased NiFe thin film. NiFe/IrMn/CoFe thin film showed two resonance field distribution due to different ferromagnetic layers. In additon to the resonance field, the line width was also analysed with related to exchange bias effect.

Correlation between Acoustic Intensity and Ground Particle Size in Alumina Ball Mill Process

  • Cho, Kyeong-Sik;Kim, Soo-Hyun;Lee, Young Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.275-284
    • /
    • 2018
  • In the ball milling process of ceramic powders, according to economic considerations for industrial applications, it is very important to quickly determine the optimum process condition with the maximum grinding efficiency. However, it is still difficult to determine the optimum condition for a ball mill with respect to the various process parameters, such as the rotational speed and the milling time. Ball milling was carried out at the same starting conditions with given amounts of alumina powders, balls and water, and was conducted slower or faster or a critical rotational speed was just determined by observing the angular position of the slurry in a semi-translucent polyethylene laboratory container. With respect to the different rotational speeds, which were slower or faster than the critical rotational speed, the particle size distribution of the grained powders and the acoustic intensity caused by cascading of the balls led to various behaviors. From the results of the particle size distribution and the acoustic signal analysis in the ball milling, there was one rotational speed that made the finest milled powder with maximum acoustic intensity. As a result, there was a correlation between the ground particle size and the acoustic intensity, which yields the interpretation that it can be possible in-situ to determine the optimum condition of ball milling by acoustic signal without repeated measurement efforts.

The star catalogue in Seonggyeong - Comparison with the modern Hipparcos Catalogue

  • Kim, Dong-Bin;Kim, Chun-Hwey;Lee, Yong-Sam
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.19.2-19.2
    • /
    • 2011
  • In 1861 Nam Byeong-Gil published a book called as "Seonggyeong" which contains a star catalogue (NBGC) with the positions, magnitudes, and star maps for 1449 stars. The NBGC lists only the traditional Chinese stars selected from "the sequel to the Qing Dynasty Star Catalogue and Star Map." To identify each star from the NBGC with modern counterpart, we correct the positions of the Hipparcos stars brighter than 6.5 mag for proper motion, then precess the coordinates to the epoch of the NBGC. For each star in the NBGC, we find the nearest counterpart in the Hipparcos Catalogue (HC). If a much brighter star is at a slightly larger angular distance, we select that star as the secure counterpart. As a result, 95.5% of the stars in the NBGC were identified. We find a very good overall agreement of our results with a previous analysis by Ahn et al. (1996, Journal of the Korean History of Science Society, vol. I). For securely identified stars, we analyse its accuracy on the basis of comparison with data from the HC. The correlation of the errors between right ascensions and declinations is significantly deviated from spherical distribution. The magnitudes recorded in the NBGC correlate well with modern values. The accuracy of position decreases slowly with magnitude. Right ascensions and declinations have error distributions with ${\sigma}$ = 2.0' for the former while the latter with ${\sigma}$ = 1.6', but with much more errors >5' than expected for a Gaussian distribution.

  • PDF

Evaluation of Abrasive Wear Face Using SAW (표면탄성파를 이용한 마모 표면부의 평가)

  • Kwon, Sung-D.;Yoon, Seok-S.;Song, Sung-J.;Lee, Young-Z.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.193-197
    • /
    • 2002
  • The frequency dependency of the Rayleigh surface wave was investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in the abrasion specimens, which was explained in view of the residual stress distribution. The peak intensity of the backward radiation profile decreased and the right half width of the profile increased with an increase of the variational rate of residual stress for the scuffing specimen. The peak intensity was also affected by the surface wave scattering during the propagation around the micro-damages. The peak angle might depend on not only the amount of residual stress but also the micro-structure. The result observed in this study demonstrates the high potential of the backward radiated ultrasound as a tool for the nondestructive evaluation of the subsurface gradients of materials.

Biomechanical Analysis of the Implanted Constrained and Unconstrained ICR Types of Artificial Disc using FE Model (순간중심 고정식 및 이동식 인공디스크 적용에 대한 유한요소 모델을 이용한 생체역학적 분석)

  • Yun Sang-Seok;Jung Sang-Ki;Kim Young-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.176-182
    • /
    • 2006
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical changes with its implantation were rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, a nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Biomechanical analysis was performed for two different types of artificial disc having constrained and unconstrained instant center of rotation(ICR), ProDisc and SB Charite III model. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, forces on the spinal ligaments and facet joint, and stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400N were compared. The implanted model showed increased flexion-extension range of motion compared to that of intact model. Under 6Nm moment, the range of motion were 140%, 170% and 200% of intact in SB Charite III model and 133%, 137%, and 138% in ProDisc model. The increased stress distribution on vertebral endplate for implanted cases could be able to explain the heterotopic ossification around vertebral body in clinical observation. As a result of this study, it is obvious that implanted segment with artificial disc suffers from increased motion and stress that can result in accelerated degenerated change of surrounding structure. Unconstrained ICR model showed increased in motion but less stress in the implanted segment than constrained model.

A Study on the Simulation and DSF Molding of V-groove Type Light Guide for a Backlight Unit (백라이트 유닛용 V-그루브 도광판의 전산모사 및 DSF성형에 관한 비교연구)

  • Cho K. H.;Yoon K. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.282-290
    • /
    • 2005
  • Nowadays, TFT-LCD is widely used as display unit of many digital devices. And, the backlight unit(BLU) is used as a light source of TFT-LCD module. In the backlight unit, the most important component is a light guide, which guides the input light to the TFT-LCD module uniformly. Recently, many researchers have focused on improving the efficiency of BLU by changing the design and structure of a light guide. In the present paper, a series of simulation was performed to find the optimal luminance distribution of emanated light from the given geometry as the first step. From the results of simulations for the light guide with given V-groove pattern, the emanated light from it is mostly affected by the groove angle. In the case of acute angle, about 74 degrees was found as optimal angle to satisfy the restrictions of angular luminance distribution, FWHM, the maximum luminance, etc. However, as far as the average luminance value was concerned, the case of 120 degrees(abtuse angle) was found to be the best while prism films were added to the BLU. As a next step the light guide samples of 74 and 120 degrees were manufactured by DSF method, which was recently proposed by the authors. Of course, most of design parameters were chosen by the aid of simulation results. Finally, the results of average luminance values were compared between the simulation and DSF molded samples.

The Effect of Badminton Shoe Forefoot Flexibility during the Under Clear Quick Lunge from a Jump Smashing (배드민턴화의 굴곡성(Flexibility) 차이가 점프 스매싱 후 언더클리어 동작시 하지에 미치는 영향)

  • Yi, Jae-Hoon;Sohn, Jee-Hoon;Ryue, Jae-Jin;Lee, Ki-Kwang;Lee, Jung-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.105-111
    • /
    • 2012
  • The purpose of this study was to investigate the effect that difference in forefoot of shoe flexibility during the quick lunge from a jump smashing on the lower limbs and the plantar pressure distribution. For this 10 elite badminton players with over 10 years experience and right handed participated. Two kinds of badminton shoes were selected and tested mechanical testing for the forefoot flexibility. Motion analysis, ground reaction forces and plantar pressure distribution were recorded. It was required to conduct lunge movement after jumping smashing as possible as high. Photo sensor was located in 3 meter away from standing position and its height was 40 cm. Subjects were conducted to return original position after touching the sensor as under clear movement as possible as fast. Forefoot stiffness had an effect on shoe peak bending degree and peak bending angular velocity in propulsion phase. Forefoot flexibility had an effect on ankle plantar flexion and knee flexion moment. It appears that joint power on lower limb and peak plantar pressure were not influenced by the flexibility of shoes.

Tension Crack and Lateral Pressure on Gravity Wall Backfilled by Cohesive Soil : Undrained Analysis (점성토로 뒤채움된 중력식옹벽에서의 인장균열 및 수평토압 : 비배수 해석)

  • 정성교;김형수
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.135-148
    • /
    • 1997
  • Coulomb's theory has been usually used in practice to obtain lateral earth pressure against retaining wall. Such theory is based in the assumption that the lateral pressure is a tai angular distribution, since the point of applying the lateral thrust cannot be obtained by using it. However, the results of laboratory and field tests showed that the lateral pressure was not a triangular but a nonlinear distribution. To overcome the drawback of the Coulomb's theory, the different theoretical approaches(Handy, 1985. Kingsley, 1989 : Kellogg, 1993, Chung et at,1993, 1996a) were performed for gravity wall backfilled by cohesionless soil. On the other hand, for retaining wall backfilled by ,cohesive soil, theoretical analyses were carried out only on the basis of the Rankine's or Coulomb's concepts, but the equations showed different results. Here was newly derived the equations of lateral pressures under undrained condition against gravity wall backfilled by cohesive soil. They were based on the Coulomb's wedge, adopted the arching concept. Some of the equations were derived by neglecting tension crack, while the others by considering it. Comparative results for applying different examples showed that the equation considering tension crack might be reasonable.

  • PDF