• Title/Summary/Keyword: angular distribution

Search Result 344, Processing Time 0.027 seconds

Microstructural evolution of ultrafine grained TRIP low-carbon steel (초미세 결정립 TRIP 강의 미세조직 변화)

  • Lee, C.W.;Ko, Y.G.;NamGung, S.;Shin, D.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.263-266
    • /
    • 2009
  • Transformation induced plasticity (TRIP) steel consisting of ferrite, austenite, and bainite phases was regarded as an excellent candidate for automotive applications due to the good combination of ductility and strength. The aim of the present study was to understand the microstructural characteristics of ultrafine grained (UFG) TRIP low-carbon steel fabricated via equal channel angular pressing accompanied with intercritical- and isothermal-annealing treatments. When compared to coarse grained counterpart, only the volume fraction of austenite phase in UFG TRIP steel remained unchanged, but all other microstructural variables such as size and morphology were different. It was found that UFG TRIP steel showed the homogeneous distribution of each constituent phase, which was discussed in terms of annealing treatments done in this study.

  • PDF

Effect of thermal laser pulse in transversely isotropic Magneto-thermoelastic solid due to Time-Harmonic sources

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.343-358
    • /
    • 2020
  • The present research deals with the time-harmonic deformation in transversely isotropic magneto thermoelastic solid with two temperature (2T), rotation due to inclined load and laser pulse. Generalized theory of thermoelasticity has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with uniform angular velocity and subjected to thermally insulated and isothermal boundaries. The inclined load is supposed to be a linear combination of a normal load and a tangential load. The Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components, and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of angle of inclination of normal and tangential load for Green Lindsay Model and time-harmonic source for Lord Shulman model is depicted graphically on the resulting quantities.

Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.909-924
    • /
    • 2015
  • This paper investigates the vibration phenomenon of a nanobeam subjected to a time-dependent heat flux. Material properties of the nanobeam are assumed to be graded in the thickness direction according to a novel exponential distribution law in terms of the volume fractions of the metal and ceramic constituents. The upper surface of the functionally graded (FG) nanobeam is pure ceramic whereas the lower surface is pure metal. A nonlocal generalized thermoelasticity theory with dual-phase-lag (DPL) model is used to solve this problem. The theories of coupled thermoelasticity, generalized thermoelasticity with one relaxation time, and without energy dissipation can extracted as limited and special cases of the present model. An analytical technique based on Laplace transform is used to calculate the variation of deflection and temperature. The inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of the phase-lags (PLs), nonlocal parameter and the angular frequency of oscillation of the heat flux on the lateral vibration, the temperature, and the axial displacement of the nanobeam are studied.

Modal Nodal Transport Analysis

  • Johnson, R.Douglas
    • Nuclear Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.121-128
    • /
    • 1971
  • A unified modal-nodal expansion of tile angular distribution of neutron flux in one spatial dimension is considered, following the proposal of Harms. Several standard nodal and/or modal methods of analysis are shown to be specializations of this technique. The modal-nodal moment from of the mono-energetic transport equation with isotropic sources and scattering is derived and the infinite medium eigenvalue problem solved. The technique is shown to yield results which approximate the exact value of the inverse diffusion length in non-multiplying media more accurately than standard methods of equal or somewhat greater computational complexity.

  • PDF

Dynamic Response Analysis of Rotating Functionally Graded Thin-Walled Blades Exposed to Steady Temperature and External Excitation (고온에서 외부 가진력을 받는 회전하는 경사기능 박판 블레이드의 동적응답 해석)

  • Oh, B.Y.;Na, Sung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.643-648
    • /
    • 2004
  • This paper is dedicated to the thermoelastic modeling and dynamic response of the rotating blades made of functionally graded ceramic-metal based materials. The blades modeled as non-uniform thin walled beams fixed at the hub with various selected values of setting angles and pre-twisted angles. In this study, the blade is rotating with a constant angular velocity and exposed to a steady temperature field as well as external excitation. Moreover, the effect of the temperature gradient through the blade thickness is considered. Material properties are graded in the thickness direction of the blade according to the volume fraction power law distribution. The numerical results highlight the effects of the volume fraction, temperature gradient, taper ratio, setting angle and pre-twisted angle on the dynamic response of bending-bending coupled beam characteristics are provided for the case of a biconvex cross section and pertinent conclusions are outlined.

  • PDF

Thermal Characteristics Analysis of a High-Speed HMC (초고속 수평형 머시닝센터의 열특성 해석)

  • 김석일;성하경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.221-226
    • /
    • 2002
  • This paper presents the thermal characteristics analysis of a high-speed HMC(horizontal machining center) with spindle speed of 30,000rpm and fried rate of 40m/min. The spindle speed is achieved by introducing angular contact ball bearings, oil-jet lubrication method, oil jacket cooling method, and so on. The spindle system is a motor-separated type composed of the main spindle and sub-spindle which are mechanically connected by the flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front to and rear bearings of the sub-spindle. The thermal analysis model of HMC is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution and heat flow under the various testing conditions related to spindle speed and feed rate.

  • PDF

Thermal characteristics according to the preload and cooling conditions for the high frequency motor spindle with grease lubrication (그리스 윤활 고주파 모터 주축의 예압과 냉각에 따른 열특성)

  • 최대봉;김수태;정성훈;김용기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.439-444
    • /
    • 2004
  • The important problem in high speed spindle is to reduce and minimize the thermal effect by motor and ball bearings. In this study. the effects of bearing preload and cooling for high speed spindle with high frequency motor are investigated. A high speed spindle is composed of angular contact ball bearings, high frequency motor, grease lubrication, oil jacket cooling, and so on. Heat generation of the bearing and the high frequency motor are estimated from the theoretical and experimental data. The thermal analyses of high speed spindle to minimize the thermal effect and maximize the cooling effect are carried out under the various cooling conditions and preload. Method of variable bearing preload and cooling can be useful to design the high speed motor spindle. The results show that the optimal preload and cooling are very effective to minimize the thermal displacement by motor and ball bearing.

  • PDF

Optical Characteristics of LED Backlight and CCFL Backlight for LCD-TV Applications (LCD TV용 LED백라이트와 CCFL백라이트의 광학 특성 평가 및 비교)

  • Ryu, Jin-Sun;Yu, Mi-Yeon;Park, Seung-Mi;Kim, Su-Jin;Ko, Jae-Hyeon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.69-72
    • /
    • 2009
  • Recently, LED(Light Emitting Diode) TV has attracted greate attention due to its super-slim form factore as well as low power consumption. LED TV is actually an LCD(Liquid Crystal Display) TV in which edge-lit LED backlight is adopted. In the presente study, we report on the comparison of optical characteristics 55-inch edge-lit LED backlight and CCFL(Cold Cathode Fluorescent Lam)backlight. The angular distribution of the luminance and the on-axis luminance gain on each optical component were investigated and compared. The effect of the backlight structure on the performance of the optical films was studied and discussed.

  • PDF

Thermal Analysis of a Motor-Separated Spindle System for High-Speed HMC (모터분리형 초고속 머시닝센터 주축계의 열특성 해석)

  • 김석일;권태균;나상준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.237-242
    • /
    • 2001
  • This paper presents the thermal characteristics analysis of a high-speed HMC spindle system with angular contact ball bearings, built-in motor, oil-jet lubrication method, oil jacket cooling method, and so on. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution, heat flow and thermal deformation under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

  • PDF

Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.3
    • /
    • pp.201-217
    • /
    • 2018
  • In the present research, wave propagation characteristics of a rotating FG nanobeam undergoing rotation is studied based on nonlocal strain gradient theory. Material properties of nanobeam are assumed to change gradually across the thickness of nanobeam according to Mori-Tanaka distribution model. The governing partial differential equations are derived for the rotating FG nanobeam by applying the Hamilton's principle in the framework of Euler-Bernoulli beam model. An analytical solution is applied to obtain wave frequencies, phase velocities and escape frequencies. It is observed that wave dispersion characteristics of rotating FG nanobeams are extremely influenced by angular velocity, wave number, nonlocal parameter, length scale parameter, temperature change and material graduation.