• Title/Summary/Keyword: angular distribution

Search Result 344, Processing Time 0.023 seconds

ON SPATIAL DISTRIBUTION OF SHORT GAMMA-RAY BURSTS FROM EXTRAGALACTIC MAGNETAR FLARES

  • Chang, Heon-Young;Kim, Hee-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Recently, one interesting possibility is proposed that a magnetar can be a progenitor of short and hard gamma-ray bursts (GRBs). If this is true, one may expect that the short and hard GRBs, at least some of GRBs in this class, are distributed in the Euclidean space and that the angular position of these GRBs is correlated with galaxy clusters. Even though it is reported that the correlation is statistically marginal, the observed value of < $V/V_{max}$ > deviates from the Euclidean value. The latter fact is often used as evidence against a local extragalactic origin for short GRB class. We demonstrate that GRB sample of which the value of < $V/V_{max}$ > deviates from the Euclidean value can be spatially confined within the low value of z. We select very short bursts (TgO < 0.3 sec) from the BATSE 4B catalog. The value of < $V/V_{max}$ > of the short bursts is 0.4459. Considering a conic-beam and a cylindrical beam for the luminosity function, we deduce the corresponding spatial distribution of the GRB sources. We also calculate the fraction of bursts whose redshifts are larger than a certain redshift z', i.e. f>z'. We find that GRBs may be distributed near to us, despite the non-Euclidean value of < $V/V_{max}$ >. A broad and uniform beam pattern seems compatible with the magnetar model in that the magnetar model requires a small $z_{max}$.

Evaluation of Homogeneous Ultra-fine Grain Refinements via Equal Channel Angler Pressing Process (등통로각압축공정을 통한 결정립의 균질한 초미세립화에 대한 고찰)

  • Kim, W.;Lee, H.H.;Seo, S.J.;Lee, J.K.;Yoon, T.S.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.4
    • /
    • pp.222-226
    • /
    • 2018
  • Severe plastic deformation (SPD) is a promising method for drastically enhancing the mechanical properties of the materials by grain refinement of metallic materials. However, inhomogeneous deformation during the SPD process results in the inhomogeneous microstructure of the SPD-processed material. We manufactured cylindrical copper specimens of 42 mm in diameter with ultrafine grains (UFG) using an equal channel angular pressing (ECAP) to figure out the relationship between homogeneous microstructure and the number of the processing passes. Two specimens, which are ECAP-processed 4 times (4pass) and 6 times (6pass) each with Route Bc, are prepared for comparison of mechanical properties and microstructure. The results show that the mechanical properties of the two specimens (4pass and 6pass) are similar. Moreover, both the specimens show highly enhanced mechanical properties. The 4pass specimen, however, shows inhomogeneity in hardness distribution, while the 6pass specimen shows a homogeneous distribution. Microstructure analysis reveals that the 4pass specimen has an inhomogeneous microstructure with incompletely refined grain structure. This inhomogeneity of the 4pass specimen could be explained by the circumferential rotation during ECAP process.

Energy Distribution of X-rays from Medical Linear Accelerator (의료용 선형 가속기에서 발생된 X-선의 에너지 분포에 대한 고찰)

  • 김진기;김정홍;김부길
    • Progress in Medical Physics
    • /
    • v.2 no.1
    • /
    • pp.29-35
    • /
    • 1991
  • For accureate treatment planning, new models of dose calculations are being developed which require the knowledge of the energy spectra and angular distributions of the X-rays incident on the surface of the material. In this present study, we applied the Monte Carlo methods to the systematic analysis of the spectra distribution of X-ray beams produced by medical linear accelerator. As expected, the spectra become softer as the distance is farther from the central axis. also, its influenced by the geometrical dffect of head system.

  • PDF

Optical Characteristics of LGP with Nanometer-patterned Grating (나노미터 패턴 회절격자 도광판의 광특성)

  • Hong, Chin-Soo;Kim, Chang-Kyo;Lee, Byoung-Wook;Lee, Myoung-Rae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.353-360
    • /
    • 2008
  • The LGP with nanometer structures resulted in enhancement of optical efficiency. Its fundamental mechanism is to recycle the polarized light via one round-trip through QWP(Quarter-Wave Plate) but the maximum efficiency to reach with this method is limited up to 2. To get the larger efficiency than this limited one a LGP with nanometer-patterned grating is suggested. For its optimum design the computer simulation is performed and suggests a grating that the spatial frequency between adjacent patterns is 500nm, its height 250nm, duty cycle 50%, and its cross section is rectangular. On the basis of simulation results the LGP with nanometer-patterned grating is fabricated and its optical properties such as angular intensity distribution and CIE color coordinates are characterized. The angles of transmitted light are nearly the same as the results expected from the generalized Snell's law. Thus the Mathematica code, developed in this experiment, will be applied to designing the optimized LGP. The LGP with nanometer-patterened grating shows the enhancement of transmitted intensity distribution up to 4.9 times.

A Feature of Stellar Density Distribution within Tidal Radius of Globular Cluster NGC 6626 in the Bulge Direction

  • Chun, Sang-Hyun;Lim, Dong-Wook;Kim, Myo-Jin;Sohn, Young-Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.82.1-82.1
    • /
    • 2010
  • We have investigated the spatial configuration of stars within the tidal radius of metal poor globular cluster NGC 6626 in the bulge direction. Data were obtained in near-IR J,H,Ks bands with wide-field ($20'\times20'$) detector, WIRCam at CFHT. To trace the stellar density around target cluster, we sorted cluster's member stars by using a mask filtering algorithm and weighting the stars on the color-magnitude diagram. From the weighted surface density map, we found that the stellar spatial distributions within the tidal radius appear asymmetric and distorted features. Especially, we found that more prominent over-density features are extending toward the direction of Galactic plane rather than toward the directions of the Galactic center and its orbital motion. This orientation of the stellar density distribution can be interpreted with result of disk-shock effect of the Galaxy that the cluster had been experienced. Indeed, this over-density feature are well represented in the radial surface density profile for different angular sections. As one of the metal poor globular clusters with extended horizontal branch (EHB) in the bulge direction, NGC 6626 is kinematically decoupled from the normal clusters and known to have disk motion of peculiar motion. Thus, our result will be able to add further constraints to understand the origin of this cluster and the formation of bulge region in early universe.

  • PDF

A LONGITUDINAL STUDY ON PREDICTION OF ERUPTIVE PATH AND IMPACTION OF MAXILLARY CANINE (상악견치(上顎犬齒)의 맹출로예측(萌出路豫測) 및 매복(埋伏)에 관(關)한 누년적(累年的) 연구(硏究))

  • Son, Tae-Won;Lee, Dong-Joo
    • The korean journal of orthodontics
    • /
    • v.22 no.1
    • /
    • pp.159-168
    • /
    • 1992
  • To predict eruptive path of maxillary canine, 13 male and 11 female malocclusions were longitudinally studied for 4 years. And to study frequency and distribution of impaction of maxillary canine, 1500 malocclusions were studied. The path, velocity and duration of maxillary canine eruption were determined by periodic angular and linear measurement using periodic orthopantomograms and cephalograms. The following results were obtained. 1. Maxillary canine was erupted with $14.5^{\circ}$ distal tipping from initial stage $98.1^{\circ}$ to final stage $83.6^{\circ}$ of axial inclination on orthopantomogram. 2. Eruptive velocity of maxillary canine was fastest on stage 4, and mean eruptive velocity was 10.5mm per year on stage 4. 3. Eruption of maxillary canine was completed 12 year 5 months in male and 11 years 8 months in female. 4. To predict the duration for eruption completion by position of maxillary canine on cephalogram, regression equation was obtained. 5. Frequency of impaction of maxillary canine was 1.47% in malocclusion and more frequent in male. Distribution of buccal and palatal, right and left impaction was no different, but unilateral impaction was more frequent.

  • PDF

Characteristics of Developing Turbulent Oscillatory Flows in a 180° Curved Duct with a Square Sectional by using a LDV (LDV에 의한 정사각 단면 180° 곡덕트에서 난류진동유동의 유동특성)

  • Yun, Seok-Ju;Lee, Haeng-Nam;Sohn, Hyun-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.344-353
    • /
    • 2015
  • In the present study the characteristics of turbulent oscillatory flows in a square-sectional $180^{\circ}$curved duct were investigated experimentally. A series of experiments for air flow were conducted to measure axial velocity profiles, secondary flow velocity profiles and pressure distributions. The measurements were made by a Laser Doppler Velocimeter (LDV) system with a data acquisition and processing system which includes Rotating Machinery Resolve (RMR) and PHASE software. The results from the experiment are summarized as follows. (1) The maximum velocity moved toward the outer wall from the region of a bend angle of $30^{\circ}$. The velocity distribution had a positive value extended over the total phase in the region of a bend angle of $150^{\circ}$. (2) Secondary flows were generally proportional to the velocity of the main flow. The intensity of the secondary flow was about 25% as much as that in the axial direction. (3) Pressure distributions were effects of the oscillatory Dean number and respective region.

Numerical Study on Propeller Cavitation and Pressure Fluctuation of Model and Full Scale ship for a MR Tanker (MR Tanker 실선 및 모형선 프로펠러 캐비테이션 및 변동압력 수치해석 연구)

  • Park, Il-Ryong;Kim, Ki-Sup;Kim, Je-In;Seol, Han-shin;Park, Young-Ha;Ahn, Jong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Propeller cavitation extent, pressure fluctuation induced by cavitation, pressure distribution on propeller blade, total velocity distribution and nominal wake distribution for a MR Taker were computed in both conditions of model test and sea trial using a code STAR-CCM+. Then some of the results were compared with model test data at LCT and full-scale measurement (Ahn et al (2014); Kim et al (2014)] in order to confirm the availability of a numerical prediction method and to get the physical insight of local flow around a ship and propeller. The nominal wake distributions computed and measured by LDV velocimeter on the variation of on-coming velocity show the wake contraction characteristics proposed by Hoekstra (1974). The numerical prediction of propeller cavitation extent on a blade angular position and pressure fluctuation level on each location of pressure sensors are very similar with the experimental results.

Investigation of Stereo-dynamic Properties for the Reaction H+HLi by Quasi-classical Trajectory Approach

  • Wang, Yuliang;Zhang, Jinchun;Jiang, Yanlan;Wang, Kun;Zhou, Mingyu;Liang, Xiaorui
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2873-2877
    • /
    • 2012
  • Quasi-classical trajectory (QCT) calculations of H+HLi reaction have been carried out on a new potential energy surface of the ground state reported by Prudente et al. [Chem. Phys. Lett. 2009, 474, 18]. The four polarization-dependent differential cross sections have been carried out in the center of mass (CM) frame at various collision energies. The reaction probability for the depletion channel has been studied over a wide collision energy range. It has been found that the collision energy decreases remarkably reaction probability, which shows the expected behavior of the title reaction belonging to an exothermic barrierless reaction. The results are in good agreement with previous RMP results. The P(${\theta}_r$), P(${\phi}_r$) and P(${\theta}_r,\;{\phi}_r$) distributions, the k-k'-j' correlation and the angular distribution of product rotational vectors are presented in the form of polar plots. The average rotational alignment factor <$P_2(j{\prime}{\cdot}k)$> as a function of collision energy is also calculated. The results indicate that the collision energy has a great influence on the polarization of the product rotational angular momentum vector j'.

MAGNETIC FIELD IN THE LOCAL UNIVERSE AND THE PROPAGATION OF UHECRS

  • DOLAG KLAUS;GRASSO DARIO;SPRINGEL VOLKER;TKACHEV IGOR
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.427-431
    • /
    • 2004
  • We use simulations of large-scale structure formation to study the build-up of magnetic fields (MFs) in the intergalactic medium. Our basic assumption is that cosmological MFs grow in a magnetohy-drodynamical (MHD) amplification process driven by structure formation out of a magnetic seed field present at high redshift. This approach is motivated by previous simulations of the MFs in galaxy clusters which, under the same hypothesis that we adopt here, succeeded in reproducing Faraday rotation measurements (RMs) in clusters of galaxies. Our ACDM initial conditions for the dark matter density fluctuations have been statistically constrained by the observed large-scale density field within a sphere of 110 Mpc around the Milky Way, based on the IRAS 1.2-Jy all-sky redshift survey. As a result, the positions and masses of prominent galaxy clusters in our simulation coincide closely with their real counterparts in the Local Universe. We find excellent agreement between RMs of our simulated galaxy clusters and observational data. The improved numerical resolution of our simulations compared to previous work also allows us to study the MF in large-scale filaments, sheets and voids. By tracing the propagation of ultra high energy (UHE) protons in the simulated MF we construct full-sky maps of expected deflection angles of protons with arrival energies $E = 10^{20}\;eV$ and $4 {\times} 10^{19}\;eV$, respectively. Accounting only for the structures within 110 Mpc, we find that strong deflections are only produced if UHE protons cross galaxy clusters. The total area on the sky covered by these structures is however very small. Over still larger distances, multiple crossings of sheets and filaments may give rise to noticeable deflections over a significant fraction of the sky; the exact amount and angular distribution depends on the model adopted for the magnetic seed field. Based on our results we argue that over a large fraction of the sky the deflections are likely to remain smaller than the present experimental angular sensitivity. Therefore, we conclude that forthcoming air shower experiments should be able to locate sources of UHE protons and shed more light on the nature of cosmological MFs.