• 제목/요약/키워드: and western blot analysis

Search Result 1,669, Processing Time 0.036 seconds

Expression of the red sea bream iridovirus (RSIV) capsid protein using a yeast surface display method (효모표면표출(YSD) 기법을 이용한 참돔 이리도바이러스(RSIV) 외피단백질의 발현)

  • Suh, Sung-Suk;Park, Mirye;Hwang, Jinik;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5412-5418
    • /
    • 2014
  • The red seabream iridovirus (RSIV), which belongs to the iridoviridae, causes infectious fish diseases in many Asian countries, leading to considerable economic losses to the aquaculture industry. Using the yeast surface display (YSD) technique, a new experimental system was recently developed for the detection and identification of a variety of marine viruses. In this study, a coat protein gene of RSIV was synthesized based on the nucleotide sequence database and subcloned into the yeast expression vector, pCTCON2. The expression of viral coat proteins in the yeast strain, EBY100, was detected by flow cytometry and Western blot analysis. Finally, they were isolated from the yeast surface through a treatment with ${\beta}$-mercaptoethanol. The data suggests that the YSD system can be a useful method for acquiring coating proteins of marine viruses.

Variation of Lactate Dehydrogenase Isozymes in Angelfish (Pterophyllum scalare) according to Acute Environmental Change (급격한 환경변화에 대한 angelfish (Pterophyllum scalare) 젖산탈수소효소 동위효소의 변화)

  • An, Chang-Su;Cho, Sung-Kyu;Yum, Jung-Joo
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.416-423
    • /
    • 2010
  • In this study, the properties and gene expression of the lactate dehydrogenase (EC 1.1.1.27, LDH) isozyme were studied in angelfish (Pterophyllum scalare) - known for their adaptation to the low oxygen environment of the tropics - which were acclimated to acute temperature change ($27{\pm}0.5{\rightarrow}18{\pm}0.5^{\circ}C$) and dissolved oxygen (DO) change ($6{\pm}1{\rightarrow}18\;ppm$) for 2 hours. The properties of the LDH isozymes were confirmed in the native-polyacrylamide gel electrophoresis, Western blot analysis and enzyme activity measurement. Liver- and eye-specific Ldh-C gene were expressed in liver, eye and brain tissues. Through Western blot analysis, the LDH $A_4$ isozyme was shown to have a more cathodal mobility relative to the $B_4$ isozyme. In the liver tissue, the LDH $A_4$ isozyme increased with temperature drop while the $B_4$ isozyme decreased. The LDH $A_4$ and $C_4$ isozymes increased with DO increment, while the $B_4$ isozyme decreased. In the eye tissue, the LDH $A_4$ and B4 isozymse increased with temperature drop while the $B_4$ isozyme decreased. The LDH $A_4$ and $B_4$ isozymes increased with DO increment, but the $C_4$ isozyme and isozymes including the subunit C decreased. In the heart tissue, LDH activity increased with DO increment, as well as the LDH $B_4$ isozyme. In the brain tissue, the LDH $A_4$ and $B_4$ isozymes increased with temperature drop. The LDH $B_4$ isozyme increased with DO increment. Accordingly, since the liver- and eye-specific Ldh-C are influenced by changes in DO and the LDH $B_4$ and $C_4$ isozymes are relatively controlled in the liver and eye tissues, the $C_4$ isozyme can be considered to have a lactate oxidase function.

Neuroprotective effects of geneticin (G418) via apoptosis in perinatal hypoxic-ischemic brain injury (주산기 저산소성 허혈성 뇌손상에서 항고사를 통한 geneticin (G418)의 신경보호 효과)

  • Ju, Mi;Lee, Hyun Ju;Lee, Sun Ju;Seo, Eo Su;Park, Hye Jin;Lee, Kye Yang;Lee, Gyeong Hoon;Choi, Eun Jin;Kim, Jin Kyung;Lee, Jong Won;Chung, Hai Lee;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.2
    • /
    • pp.170-180
    • /
    • 2008
  • Purpose : Some antibiotics were known to exert neuroprotective effects in the animal model of hypoxic-ischemic (H-I) brain injury, but the mechanism is still unclear. A recent study reported that geneticin (G418), an aminoglycoside antibiotic, increased survival of human breast cancer cells by suppressing apoptosis. We investigated the neuroprotective effects of systemically administrated geneticin via anti-apoptosis following the H-I brain injury Methods : Seven-day-old Sprague-Dawley rat pups were subjected to unilateral (left) common carotid artery occlusion followed by 2.5 hours of hypoxic exposure and the cortical cell culture of rat brain was done under a hypoxic incubator. Apoptosis was measured in the injured hemispheres 7 days after H-I insult and in the injured cells from hypoxic chamber using morphologic analysis by Terminal dUTP Nick-end Labeling(TUNEL) assay and immunohistochemistry for caspase-3, and cytologic analysis by western blot and real time PCR for bax, bcl-2, and caspase-3. Results : The gross appearance and hematoxylin and eosin stain revealed increased brain volume in the geneticin-treated animal model of perinatal H-I brain injury. The TUNEL assay revealed decreased apoptotic cells after administration of geneticin in the cell culture model of anoxia. Immunohistochemistry showed decreased caspase-3 expression in geneticin-treated cortical cell culture. Western blot and real-time PCR showed decreased caspase-3 expression and decreased ratio of Bax/Bcl-2 expression in geneticin-treated animal model. Conclusion : Geneticin appears to exert a neuroprotective effect against perinatal H-I brain injury at least via anti-apoptosis. However, more experiments are needed in order to demonstrate the usefulness of geneticin as a preventive and rescue treatment for H-I brain injuries of neonatal brain.

Analysis and cloning of the gene involved in activation of maltose metabolism in Serratia marcescens. (Serratia marecscens에서 maltose 대사를 촉진하는 유전자의 클로닝 해석)

  • 이승진;유주순;김혜선;이상철;정수열;최용락
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.21-25
    • /
    • 2000
  • We have got several clones from Serratia marcescens which stimulated the cells to use maltose as a carbon source in Escherichia. coli TP2139 ( lac, crp). One of the cloned genes, pCKB17, was further analyzed. In order to find whether the increased expression of the gent was under the direction of maltose metabolism, we constructed several recombinant subclones. We have found that the clone, pCKB17AV, codes maltose metabolism stimulation(mms) gene. E. coli transformed with the cloned gene showed increase in the activity of maltose utilzation, The recombinant proteins expressed by multicopy and induction with IPTG, one polypeptide of 29-kDa, was confirmed by SDS-PAGE. The overexpression of maltose-binding proter protein in the presence of mms gene was confirmed by Western blot analysis. Southern hybridization analysis confirmed that the cloned DNA fragment was originated from S. marcescens chromosomal DNA.

  • PDF

Expression of ${\alpha}$-Galactosidase Gene from Leuconostoc mesenteroides SY1 in Lactobacillus brevis 2.14

  • Lee, Kang-Wook;Park, Ji-Yeong;Park, Jae-Yong;Chun, Ji-Yeon;Kim, Jeong-Hwan
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1115-1118
    • /
    • 2008
  • ${\alpha}$-Galactosidase gene (aga) from Leuconostoc mesenteroides SY1 was expressed in a heterologous host, Lactobacillus brevis 2.14 using an Escherichia coli-Leuconostoc shuttle vector, pSJE. pSJEaga (pSJE carrying aga) was introduced into Lactobacillus brevis 2.14 by electroporation and transformation efficiency was $1.1{\times}10^3$ per ${\mu}g$ DNA. L. brevis transformants (TFs) showed higher ${\alpha}$-galactosidase (${\alpha}$-Gal) activities than cells containing pSJE. Transcription levels of aga in L. brevis 2.14 grown on different carbon sources (1%, w/v) were examined by slot blot analysis. Aga transcript levels and ${\alpha}$-Gal activities were higher in cells grown on melibiose, raffinose, and galactose than cells on glucose, sucrose, and fructose. Western blot result showed that L. brevis 2.14 harboring pSJEaga produced much more ${\alpha}$-Gal when grown on melibiose than on glucose.

Development of Recombinant Coat Protein Antibody Based IC-RT-PCR and Comparison of its Sensitivity with Other Immunoassays for the Detection of Papaya Ringspot Virus Isolates from India

  • Sreenivasulu, M.;Gopal, D.V.R. Sai
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • Papaya ringspot virus (PRSV) causes the most widespread and devastating disease in papaya. Isolates of PRSV originating from different geographical regions in south India were collected and maintained on natural host papaya. The entire coat protein (CP) gene of Papaya ringspot virus-P biotype (PRSV-P) was amplified by RTPCR. The amplicon was inserted into pGEM-T vector, sequenced and sub cloned into a bacterial expression vector pRSET-A using a directional cloning strategy. The PRSV coat protein was over-expressed as a fusion protein in Escherichia coli. SDS-PAGE gel revealed that CP expressed as a ~40 kDa protein. The recombinant coat protein (rCP) fused with 6x His-tag was purified from E.coli using Ni-NTA resin. The antigenicity of the fusion protein was determined by western blot analysis using antibodies raised against purified PRSV. The purified rCP was used as an antigen to produce high titer PRSV specific polyclonal antiserum. The resulting antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) assay and compared its sensitivity levels with ELISA based assays for detection of PRSV isolates. IC-RT-PCR was shown to be the most sensitive test followed by dot-blot immunobinding assay (DBIA) and plate trapped ELISA.

Transgenic Siberian Ginseng Cultured Cells That Produce High Levels of Human Lactoferrin (인체 락토페린 생산 형질전환 가시오갈피 배양세포)

  • Jo Seung-Hyun;Kwon Suk-Yoon;Kim Jae-Whune;Lee Ki-Teak;Kwak Sang-Soo;Lee Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.209-215
    • /
    • 2005
  • Lactoferrin is an iron-binding glycoprotein with many biological roles, including the protection against microbial and virus infection, stimulation of the immune system. We developed the transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing the human lactoferrin (hLf) protein following Agrobacterium tumefaciens-mediated transformation. A construct containing a targeting signal peptide from tobacco endoplasmic reticulum fused to hLf cDNA under the control of an oxidative stress-inducible SWPA2 promoter was engineered. Transgenic Siberian ginseng cultured cells to produce a recombinant hLf protein were successfully generated and confirmed by PCR and Southern blot analysis. ELISA and western blot analysis showed that full length-hLf protein was synthesized in the transgenic cells. The production of hLf increased proportionally to cell growth and reached a maximal (up to 3% of total soluble proteins) at the stationary phase. These results suggest that the transgenic Siberian ginseng cultured cells in this study will be biotechnologically useful for the commercial production of medicinal plant cell cultures to produce hLf protein.

Effect of Sodium Butyrate on GFP Expression Level in Transgenic PoIygonum tinctorium Cells (쪽(Polygonum tinctortium) 세포의 형질전환 및 쪽 세포에서 Sodium Butyrate가 Green Fluorescent Protein 발현에 미치는 영향)

  • Park, Sung-Kil;Chung, Choong-Sik;Lee, Jong-Jin;Lee, Youn-Hyung;Chung, In-Sik
    • Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.215-218
    • /
    • 2001
  • To examine the expression of foreign protein in Polygonum tinctorium cells, plasmid pCAMBIA1302 encoding Green Fluorescent Protein(GFP) was used to transform the cells and the expression was confirmed using Western blot analysis. When the effect of sodium buryrate on the formation of GFP was examined, cell growth was retarded at the addition of 10 mM and was stalled at more than 15 mM. The amount of GFP production was increased by 15% when 5 mM of sodium butyrate was added at three-days after inoculation as compared to at 0-day. Moreover, when sodium butyrate was added at three-days after inoculation, the amount of GFP was increased by 50% at the addition of 5 mM of sodium butyrate as compared to 10 mM.

  • PDF

Analysis of antigenic domain of GST fused major surface protein (p30) fragments of Toxoplasma gondii (융합단백질로 발현된 톡소포자충의 주요막단백질(p30) 절편의 항원성)

  • 남호우;임경심
    • Parasites, Hosts and Diseases
    • /
    • v.34 no.2
    • /
    • pp.135-142
    • /
    • 1996
  • Antigenic domain of jai or surface protein (p30) of Toxoplosmc Sondii was analyzed after polymerase chain reaction (PCR) of its gene fragments. Hydrophilic or hydrophobic moiety of amino acid sequences were expressed as glutathione S-transferase (G57) fusion proteins. Fragments of p30 gene were as follows: 737, total p30 open reading frame (ORF) ; S28, total ORF excluding N-terminal signal sequence and C-terminal hydrophobic sequence; Al9, N-terminal 2/3 parts of A28; A19, N-terminal 2/3 of S28; P9, C-terminal 2/3 part of S28; Z9. middle 1/3 of S28; and 29, C-terminal 1/3 of S28. respectively. Primer of each fragment was synthesized to include clamp sequence of EcoR I restriction site. PCR amplified DNA was inserted info GST (26 kDa) expression vector, PGEX-47-1 to transform into Escheri,hia coei (.JM105 strain). G57 fusion proteins were expressed with IPTG induction as 63. 54, 45, 45, 35, 36. and 35 kDa proteins measured by SDS-PAGE. Each fusion protein was confirmed with G57 detection kit. Western blot analysis with the serum of a toxoplasmosis patient revealed antigenicity in proteins expressed by T37. S28, and Al9 but not those by Pl8. X9, Y10, and Z9. Antigenicity of p30 seems to be located either in N-terminal 115 part in the presence of middle 1/3 part or in the oligopeptides between margins of the first and second 1/3 parts.

  • PDF

Integration of virtual screening and proteomics reveals potential targets and pathways for ginsenoside Rg1 against myocardial ischemia

  • Rongfang Xie;Chenlu Li;Chenhui Zhong;Zuan Lin;Shaoguang Li;Bing Chen;Youjia Wu;Fen Hu;Peiying Shi;Hong Yao
    • Journal of Ginseng Research
    • /
    • v.48 no.4
    • /
    • pp.395-404
    • /
    • 2024
  • Background: Ginsenoside Rg1 (Rg1) is one of the main active components in Chinese medicines, Panax ginseng and Panax notoginseng. Research has shown that Rg1 has a protective effect on the cardiovascular system, including anti-myocardial ischemia-reperfusion injury, anti-apoptosis, and promotion of myocardial angiogenesis, suggesting it a potential cardiovascular agent. However, the protective mechanism involved is still not fully understood. Methods: Based on network pharmacology, ligand-based protein docking, proteomics, Western blot, protein recombination and spectroscopic analysis (UV-Vis and fluorescence spectra) techniques, potential targets and pathways for Rg1 against myocardial ischemia (MI) were screened and explored. Results: An important target set containing 19 proteins was constructed. Two target proteins with more favorable binding activity for Rg1 against MI were further identified by molecular docking, including mitogen-activated protein kinase 1 (MAPK1) and adenosine kinase (ADK). Meanwhile, Rg1 intervention on H9c2 cells injured by H2O2 showed an inhibitory oxidative phosphorylation (OXPHOS) pathway. The inhibition of Rg1 on MAPK1 and OXPHOS pathway was confirmed by Western blot assay. By protein recombination and spectroscopic analysis, the binding reaction between ADK and Rg1 was also evaluated. Conclusion: Rg1 can effectively alleviate cardiomyocytes oxidative stress injury via targeting MAPK1 and ADK, and inhibiting oxidative phosphorylation (OXPHOS) pathway. The present study provides scientific basis for the clinical application of the natural active ingredient, Rg1, and also gives rise to a methodological reference to the searching of action targets and pathways of other natural active ingredients.