• 제목/요약/키워드: and turbidity

검색결과 1,695건 처리시간 0.03초

Evaluation of Treatment Efficiency using non-Control Indicator in Drinking Water Treatment Process (미규제 수질인자를 이용한 정수공정의 효율성 평가)

  • Lee Jae-Young;Kang Mee-A
    • The Journal of Engineering Geology
    • /
    • 제16권2호
    • /
    • pp.153-159
    • /
    • 2006
  • The discharges of time, technology and finance was increased and it was difficult to use water resources effectively by serious water pollutions. Thus the main aim of this work was focused on effectiveness of water treatment process using non-controlled indicators such as UV absorbance($E_{260}$) and particle counts that provided analytical results with simple and rapid. The soluble aluminum was increased by the increase of aluminum doses for turbidity removals It means that the water quality was not controlled by only turbidity monitoring cause maximum turbidity removal did not guarantee minimum residual aluminum in an aluminum-based coagulation. E removal efficiency appeared to be the promising indicator for monitoring the effectiveness of the water quality process such as coagulation and nanofiltration membranes for arsenic(V). On the basis of the particle monitoring, it was also found that the particle counts could be used very useful for changing the coagulants in real water treatments.

Spatial Distribution of Epilithic Diatom Communities in the Estuary of Korean Peninsula (한반도 하구역 부착돌말류의 공간적 분포)

  • Kim, Ha-Kyung;Cho, In-Hwan;Kim, Young-Hyo;Lee, Min-Hyuk;Kim, Yong-Jae;Won, Du-Hee;Hwang, Su-Ok;Byun, Jung-Hwan;Hwang, Soon-Jin;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • 제51권1호
    • /
    • pp.1-15
    • /
    • 2018
  • With land-use (cover) and water quality, the distributional characteristics of epilithic diatom communities were studied with 193 samples from estuaries of Korean peninsula between 2015 and 2016. Of total 394 taxa classified, Nitzschia perminuta (19.6%) and N. inconspicua (14.0%) were the 1st and 2nd dominant species. Using a cluster analysis, the epilithic diatom communities of Korean estuaries were divided into four groups (G1-G4). Ecological characteristics of each group were followed: G1 was located in estuaries of the East Sea, and characterized by high forest land-use and high DO and low nutrients; G2 was the eastern part of the South Sea, and characterized by low turbidity and nutrients; G3 was the western part of the South Sea, and characterized by high agriculture, low electric conductivity and low salinity; G4 was the Yellow Sea, and characterized by high nutrients. The environmental factors having significant correlation with diatom distributions were as follows: TN to G1, turbidity to G2, agriculture to G3, and TP to G4. Moreover, the important factors affecting the occurrence of indicator species were forest land-use for Fragilaria construens var. venter in G1, turbidity for Rhoicosphenia abbreviata in G2, urban land- use and total phosphorus (TP) for Bacillaria paradoxa and Hantzschia amphioxys of G3, and TP and turbidity for N. ovalis and Stephanodiscus invistatus of G4. These results collectively indicate that the distribution of epilithic diatom communities in Korean peninsula was largely effected by water quality and land cover/use.

Modeling Study of Turbid Water in the Stratified Reservoir using linkage of HSPF and CE-QUAL-W2 (HSPF와 CE-QUAL-W2 모델의 연계 적용을 이용한 용담댐 저수지 탁수현상의 모델 연구)

  • Yi, Hye-Suk;Jeong, Sun-A;Park, Sang-Young;Lee, Yo-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제30권1호
    • /
    • pp.69-78
    • /
    • 2008
  • An integration study of watershed model(HSPF, Hydological Simulation program-Fortran) and reservoir water quality model (CE-QUAL-W2) was performed for the evaluation of turbid water management in Yongdam reservoir. The watershed model was calibrated and analyzed for flow and suspended solid concentration variation during rainy period, their results were inputted for reservoir water quality model as time-variable water temperature and turbidity. Results of the watershed model showed a good agreement with the field measurements of flow and suspended solid. Also, results of the reservoir water quality model showed a good agreement with the filed measurements of water balance, water temperature and turbidity using linkage of the watershed model results. Integration of watershed and reservoir model is an important in turbid water management because flow and turbidity in stream and high turbidity layer in reservoir could be predicted and analyzed. In this study, the integration of HSPF and CE-QUAL-W2 was applied for the turbid water management in Yongdam reservoir, where it is evaluated to be appliable and important.

Optimizing Coagulation Conditions of Magnetic based Ballast Using Response Surface Methodology (반응표면분석법을 이용한 자성기반 가중응집제의 응집조건 최적화)

  • Lee, Jinsil;Park, Seongjun;Kim, Jong-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제39권12호
    • /
    • pp.689-697
    • /
    • 2017
  • As a fundamental study to apply the new flocculation method using ballast in water treatment process, the optimal conditions for general and ballast coagulant dosage, and pH, which are known to have a significant influence, were derived by response surface methodology. Poly aluminum chloride (PAC) and magnetite ballast were used as a general coagulant and ballast, respectively. Coagulation experiments were performed by jar-tester using the kaolin based synthetic water. The effects of three independent variables (pH, PAC, and ballast) on response variables (turbidity removal rate and average settling velocity of flocs) and the optimum condition of independent variables to induce the optimum flocculation were obtained by 17 experimental conditions designed by Box-Behnken procedure. After performing experiments, the quadratic regression model was derived for each of response variables, and the response surface analysis was conducted to explore the correlation between independent variables and response variables. The $R^2$ values for the turbidity removal rate and the average settling velocity were 0.9909 and 0.8295, respectively. The optimal conditions of independent variables were 7.4 of pH, 38 mg/L of PAC and 1,000 mg/L of ballast. Under these conditions, the turbidity removal rate was more than 97% and the average settling velocity exceeded 35 m/h.

Optimization of Chemical Coagulation for Wastewater Treatment in a Confectionery Factory (제과공장 폐수의 화학적 응집공정 최적화)

  • Keum, Seung-Hae;Chang, Kyu-Sub;Song, Kyung-Bin;An, Gil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • 제27권3호
    • /
    • pp.318-323
    • /
    • 1995
  • To improve wastewater treatment in a confectionery factory and to optimize chemical coagulation process, this study was performed. $COD_{Mn}$ and total solid of untreated wastewater were $200{\sim}820ppm\;and\;860{\sim}1350ppm$, respectively. Composition of total solid was sugar 40%, protein 10%, hexane-soluble 20%, and ash 30%. Turbidity at 650 nm and the amount of suspended solid (SS) showed correlation, thus turbidity could be used for the on-line measurement of SS. The most effective combination of coagulants for the removal of $COD_{Mn}$ and SS was that of $Al_2(SO_4)_3\;and\;Ca(OH)_2$. The optimal concentration of $Al_2(SO_4)_3\;and\;Ca(OH)_2$ was 480 ppm and 200 ppm, respectively. Optimal retention time of wastewater for $Al_2(SO_4)_3$ addition $Ca(OH)_2$ addition : flocculation was 2 : 2 : 10 min. Multiple treatment of $Al_2(SO_4)_3:Ca(OH)_2$ overcame coagulation inhibition by gelatin and detergent, and addition of microbial sludge reduced it.

  • PDF

Comparative study on cleaning effects of air scouring and unidirectional flushing considering water flow direction of water pipes (상수도관의 물 흐름 방향을 고려한 공기주입 세척 및 단방향 플러싱 공법의 세척 효과 비교 연구)

  • Seo, Jeewon;Lee, Gyusang;Kim, Kibum;Hyung, Jinseok;Kim, Taehyeon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제33권5호
    • /
    • pp.353-366
    • /
    • 2019
  • This research proposes an optimal flushing operation technique in an effort to prevent secondary water pollutions and accidents in aged pipes, and to improve the cleaning effect of unidirectional flushing. Water flow directions were analyzed using EPANET 2.0, while flushing and air scouring experiments in forward and reverse directions were performed in the field. In 42 experiments, average residual chlorine concentration and turbidity were improved after cleaning compared to before cleaning. It was found that even when the same cleaning method was used, further improvement of cleaning effect was possible by applying air injection and reverse direction cleaning techniques. By means of one-way ANOVA(Analysis of variance), it was also possible to statistically verify the need of actively utilizing air injection and reverse direction cleaning. Based on correlation between turbidity and TSS, the total amount of suspended solids removal was estimated for 874 flushing operations and 194 air scouring operations. The result showed that air scouring used more discharge water than flushing by an average of $4.9m^3$ yet with larger amounts of suspended solids removal by an average of 145.9 g. The result of analysis on turbidity values from 887 flushing operations showed low cleaning effect of unidirectional flushing for the pipes with diameters over 300 mm. In addition, the turbidity values measured during cleaning showed an increasing tendency as pipe age increased. The methodology and results of this research are expected to contribute to the efficient maintenance and improvement of water quality in water distribution networks. Follow-up research involving the measurement of water quality at regular time intervals during cleaning would allow a more accurate comparison of discharge water quality characteristics and cleaning effects between different cleaning methods. To this end, it is considered necessary to develop a standardized manual that can be used in the field and to provide relevant trainings.

Variation of Effective Constituents Contents, Physical Properties and Color Intensities of Extracts from White Ginseng Roots of Different Cultivating Years. (년근별 인삼추출물의 사포닌함량, 물리성 및 색도의 변화)

  • Kim, Dong-Cheol;Chang, Sang-Moon;Choi, Jyung
    • Applied Biological Chemistry
    • /
    • 제38권1호
    • /
    • pp.67-71
    • /
    • 1995
  • For the quality management of ginseng root extracts and their products, the effective constituents contents, physical properties (pH, turbidity, viscosity, optical density) and color intenties of the extracts from white ginseng roots of different cultivating years. The sugar contents, lightness and yellow intensity of extracts from white ginseng roots increased with increased their cultivating years. The crude ash contents turbidity and optical density of extracts from white ginseng roots decreased with increased their cultivating years. Therefore, the extracts from white ginseng root of 5 or 6 cultivated years showed higher quality than the extracts from ginseng root of 4 cultivated years.

  • PDF

Evaluation on Removal Efficiency of Cryptosporidium using Surrogate in Pilot Plant of Conventional Water Treatment Process (표준정수처리 파일럿에서 Cryptosporidium 유사체를 이용한 Cryptosporidium 제거효율 평가)

  • Park, Sangjung;Chung, Hyenmi;Choi, Heejin;Jun, Yongsung;Kim, Jongmin;Kim, Taeseung;Chung, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • 제26권3호
    • /
    • pp.399-405
    • /
    • 2010
  • In order to quantify removal efficiency of Cryptosporidium in water treatment process and evaluate factors influencing removal efficiency of Cryptosporidium in each step of water treatment process, large pilot plant system ($100m^3/day$) and Cryptracer, surrogate of Cryptosporidium, were used. The removal efficiency of Cryptracer was around 0.8~1 log in coagulation process and 3.3~4.8 log in sand filtration process under ordinary environmental conditions. Factors influenced removal efficiency of Cryptracer were high fluctuate turbidity and water temperature. High fluctuate turbidity made difficult to adjust optimum PAC concentration, caused to drop removal efficiency of coagulation process (0.5 log). Inadequate coagulation process influenced to sand filtration process (2.1 log), caused to decline of removal efficiency in the whole process (2.6 log). Low temperature below $2^{\circ}C$ also influenced coagulation process (0.6 log). Therefore, It is shown that careful attention in the control of Cryptosporidium is needed in flood period, when high fluctuate turbidity would be, and winter period of low temperature.

Milling characteristics of cutting-type rice milling machine according to the rotating speed of the main shaft

  • Cho, Byeong-Hyo;Han, Chung-Su;Kang, Tae-Hwan;Lee, Dong-Il;Won, Jin-Ho;Lee, Hee-Sook
    • Korean Journal of Agricultural Science
    • /
    • 제44권3호
    • /
    • pp.416-423
    • /
    • 2017
  • This study aimed to identify milling characteristics depending on the rotating speed of the main shaft of the cutting-type rice milling machine which can minimize the conventional milling process. Brown rice, which was produced in Gunsan-si, Jeollabuk-do, Republic of Korea, in 2016, was used as the experimental material. The milling characteristics of white rice were measured under four different rotating speeds of main shaft: 950 - 1,050 rpm, 1,000 - 1,100 rpm, 1,050 - 1,150 rpm, and 1,100 - 1,160 rpm. For each shaft speed, 300 kg of brown rice was processed, and the milling characteristics were measured according to the whiteness, grain temperature, cracked rice ratio, broken rice ratio, turbidity, and energy consumption. The whiteness of rice grain was found to be consistent at around $40{\pm}0.5$ only when milled at the shaft speed of 950 - 1,050 or 1,000 - 1,100 rpm. The grain temperature during the milling process increased by 11.35 to $11.85^{\circ}C$, showing little differences amongst shaft speeds. The cracked rice ratio increased by 8.2 to 10.4% at all conditions. The broken rice ratio ranged from 0.58 to 0.76%, reflecting a low level. The turbidity after milling was 54.8 ppm when milled at 1,000 - 1,100 rpm. Energy consumption of 12.98 and 12.18 kWh/ton were recorded at the shaft speed of 1,000 - 1,100 and 1,050 - 1,150 rpm, respectively. The result of this study indicates that the optimal rotating speed of main shaft would be 1,000 - 1,100 rpm for a cutting-type rice milling machine.

Effect of Heating Temperature, Time and Protein Concentration on the Gel Properties and Heat Stability of a Mixed System of Pork Myofibrillar and Plasma Proteins (가열온도, 가열시간, 단백질농도가 혈장단백질과 근원섬유단백질 혼합물의 gel 특성 및 열안정성에 미치는 영향)

  • Kim, Cheon-Jei;Han, Eui-Su;Ko, Won-Sik;Choi, Do-Young;Lee, Chi-Ho;Joung, Ku-Young;Choe, Byung-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • 제25권3호
    • /
    • pp.295-298
    • /
    • 1993
  • This study was carried out to investigate the effects of heating temperature, heating time and protein concentration on the gel properties and heat stability of a mixed system of pork plasma and myofibrillar to increase the utility of porcine blood as protein resources of the food industry, especially meat processing industry. The solubility of plasma protein and mixture (plasma + myofibrillar protein) decreased significantly at $70^{\circ}C\;to\;90^{\circ}C$ when heating temperature rised, whereas myofibrillar protein decreased slightly at $40^{\circ}C\;to\;60^{\circ}C$, and the gel strength and the turbidity of those increased significantly at these heating temperatures. The solubility of plasma protein and mixture decreased when the heating time increased at $75^{\circ}C$, whereas the gel strength and turbidity increased, and the solubility, the gel strength and the turbidity of myofibrillar protein showed no changes.

  • PDF