• Title/Summary/Keyword: and turbidity

Search Result 1,695, Processing Time 0.034 seconds

Macroalgal Community Structure on the Subtidal of Southern Six Islands, Korea (남해안 6개 도서의 조하대 해조류 군집구조)

  • Heo, Jin suk;Yoo, Hyun Il;Park, Eun jung;Ha, Dong Soo
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.595-603
    • /
    • 2017
  • The macroalgal community structure was examined at the subtidal zones of six study sites, on the Southern coast of Korea from between May and August 2015. A total of 132 seaweeds, comprising 10 green, 28 brown and 94 red Seaweed, were identified. The seaweed biomass was $80.32g\;dry\;wt.\;m^{-2}$ in average, and it was maximal at Geomundo ($166.94g\;dry\;wt.\;m^{-2}$) and minimal at Byeongpungdo ($14.52g\;dry\;wt.\;m^{-2}$). On the basis of the biomass, the Ecklonia cava was a representative species, distributed widely in the subtidal zone of the three islands (Yeoseodo, Geomundo, Baekdo). Also, the Sargassum sp. was dominant at Sejondo and Hongdo. The turbidity and light transmittance was divided into two groups. The seaweed community structure of group A (Byeongpungdo, Sejondo, Geomundo) was characterized by high turbidity, low light transmittance and a lower habitat depth than were observed in group B (Hongdo, Baekdo, Yeoseodo). As the water depth increased, the biomass decreased due to the lowered light transmittance. In Byeongpungdo and Sejondo, which showed high turbidity and low light transmittance, the degree of seaweed coverage was decreased with the depth of water. The ESGII ratio of the Ecological Status Group was higher than fourty percentage in Byeongpungdo and Baekdo. Community indices were as follows: dominance index (DI) 0.35-0.90, richness index (R) 7.03-17.93, evenness index (J′) 0.22-0.60, and diversity index (H′) 0.79-2.18. The Macroalgal zonation of the subtidal zone was calculated by the Ecklonia cava and Brown algal population on five islands(Byeongpungdo, Yeoseodo, Geomundo, Beakdo, Hongdo). On the other hand, Undaria pinnatifida and Sargassum sp. dominated at Sejondo. Additionally, the biomass ratio and the species richness of green algae was lower in group A. These differences in the seaweed community structure may have resulted from the effects of turbidity and light transmittance.

Determination of Optimum Dosage of Polymer by Zeta potential in the Wastewater Treatment (수처리 시 Zeta전위 측정에 의한 응집제 주입량 결정)

  • Cho, Jun-Hyung;Kang, Mee-Ran
    • Journal of Forest and Environmental Science
    • /
    • v.22 no.1
    • /
    • pp.27-31
    • /
    • 2006
  • Sedimentation characteristics such as SS, COD removal efficiency of wastewater in the toilet paper mill using recycled paper were examined by zeta potential. Optimum dosage of coagulant were determined by turbidity, SS, COD and then equation for treatment efficiency was suggested. Mechanical strength of floc was determined by turbidity.

  • PDF

Study on Salinity Distribution Change by the Fresh Water at the Bay in Flood (홍수기 하구로 유입된 담수로 인한 만에서의 염분분포 변화에 관한 연구)

  • Lee, Hyun-Seok;Ishikawa, Tadaharu;Kim, Young-Sung;Chae, Hyo-Sok
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.23-30
    • /
    • 2011
  • Any significant inflow of fresh water due to flood or snow melting can rapidly reduce salinity at the bay. In such a case, the habitat environment in the sea near river mouth can be partly destroyed. Therefore, research to understand the salinity distribution quantitatively at the bay for the utilization of natural environment and for the inhabitant conservation must be very important. In this study, the investigation on the relationship between satellite image and turbidity is carried out first, and then the salinity distribution at the bay using the relationship between turbidity and salinity is derived. The main results are as follows. First the reappearance ability of RGB bands respectively of the satellite image is investigated, and then it was confirmed that the combination of band2 and band3 expressed best the movement characteristics of turbid water at the bay is chopped up into 4 small areas. Second the turbidity of river mouth is estimated using the travel time from the upward monitoring station to the river mouth. Finally the satellite image is converted into the salinity distribution by the correlation of salinity and turbidity. It is confirmed that the salinity distributions obtained from above three investigation methods are quite reasonable and clear.

Investigation of Some Components in Blood Serum of Healthy Dairy Cattle in a Liver Function Test 1. SGOT, SGPT, SALP, Thymol Turbidity, Total Protein, Albumin, Globulin, A/G Ratio, Total Bilirubin and Total Cholesterol (우유혈청(乳牛血淸)의 각종(各種) 간기능검사치(간기능검사치)에 관(關)한 연구(硏究) 1. SGOT, SGPT, SALP, Thymol Turbidity, 혈청총단백량(血淸總蛋白量), 혈청(血淸) Albumin, 혈청(血淸) Globulin, A/G 비율(比率), 총(總) Bilirubin 및 총(總) Cholesterol)

  • Park, Nam Yong
    • Korean Journal of Veterinary Research
    • /
    • v.16 no.2
    • /
    • pp.131-139
    • /
    • 1976
  • The concentrations of some components of the serum in a liver function test were determined in samples of 74 apparently healthy dairy cattle, imported from foreign countries in Jeonnam district, during the periods of June to September of 1975 and July to August of 1976. The ranges, mean concentrations and activities of the SGOT, SGPT, SALP, thymol turbidity, total protein, serum albumin, serum globulin, A/G ratio, total bilirubin and total cholesterol were investigated in this work. This results obtained in the survey were summarized as follows: 1. The SGOT activities obtained from Holstein cows ranged from 57 to 129 Sigma Frankel units/ml, with a mean of $96.5{\pm}19.38$ S.F. units/ml. 2. The SGPT activities obtained from Holstein cows ranged from 5 to 49 Sigma Frankel units/ml, with a mean of $21.27{\pm}9.52$ S.F units/ml. 3. The alkaline phosphatase activities of serum obtained from Holstein cows ranged from 0.3 to 3.8 Sigma Frankel units/ml, with a mean of $1.88{\pm}0.94$ S.F. units/ml. 4. The thymol turbidity of serum obtained from Holstein cows ranged from 0.2 to 4.4 Shank Hoagland units/ml, with a mean of $1.69{\pm}0.30$ S.H units/ml. 5. The total serum protein values of Holstein cows ranged from 5.9 to 8.6g/100ml with a mean of $7.17{\pm}0.65g/100ml$. 6. The serum albumin values of Holstein cows ranged from 2.5 to 4.3g/100ml with a mean of $3.24{\pm}0.28g/100ml$. 7. The serum globulin values of Holstein cows ranged from 2.9 to 5.8g/100ml with a mean of $4.02{\pm}0.72g/100ml$. 8. The A/G ratio of serum obtained from Holstein cows ranged from 0.5 to 1.0 with a mean of $0.78{\pm}0.12$. 9. The total bilirubin of serum obtained from Holstein cows ranged from 7.2 to 0.8mg/100ml, with a mean of $0.32{\pm}0.11mg/100ml$. 10. The total cholesterol of serum obtained from Holstein cows ranged from 50.5 to 240.6mg/100ml with a mean of $135.70{\pm}57.44mg/100ml$. 11. There was little difference in the concentrations of the various serum components between cow groups by birth countries and total cow group, except for SGOT activities, serum alkaline phosphatase activities, thymol turbidity of the Holstein cows from New Zealand.

  • PDF

Optimum Coagulation Conditions for Ceramic Microfiltration Membrane Process (세라믹 정밀여과막 공정을 위한 최적 응집조건)

  • Lim, Jae-Lim;Lee, Kyung-Hyuk;Lee, Young-Joo;Park, Jong-Yul
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • This study was carried out to find the optimum coagulation conditions for ceramic microfiltration process of Y water treatment plant. When pH of raw water from Y Dam was adjusted to 7, the efficiency of coagulation was the best and the optimun dosage of coagulant was 3 mg/L(as $Al_2O_3$) for turbidity of raw water less then 10 NTU in Jar test. In mini module test, the decay rate of specific flux was the lowest when PAC (poly Aluminum Chloride) was used among coagulants and pH was adjusted to 7. The decay rate of specific flux for raw water turbidity of 10~30 NTU was greatly decreased with increase of dosage of coagulant (PAC) while the rate was not significantly decreased for turbidity more than 50 NTU. In conclusion, the optimum dosage of PAC (11% as $Al_2O_3$) was 30 and 50 mg/L for raw water turbidity of less than 10 NTU and more than 50 NTU, respectively. The dosage of PAC should be increased linearly 30 to 50 mg/L depending on raw water turbidity of 10 to 50 NTU.

Shattering Ratio of Manganese Nodule and Physical Properties of Powdered Manganese Nodule and Sea eottom Sediment (망간단괴의 분화율과 망간단괴 분말 및 해저퇴적물의 물리적 특성)

  • Choi, Hun-Soo;Kang, Jung-Seock;Chang, Se-Won;Koh, Sang-Mo;Um, In-Kwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.277-287
    • /
    • 2007
  • To understand the effects of the powdered manganese nodule and sea bottom sediment pumped up with nodules on the mining process, the shattering ratio of manganese nodule and their physical properties are analyzed. The self shattering ratio and crushing shattering ratio are about 27% and about 3%, respectively. Then total shattering ratio is about 30%. The initial turbidity of the powdered manganese nodule and the bottom sediment show high, i.e., about 3,100 and 1,850 respectively. But their turbidities decrease rapidly with time. After 1 hour, turbidity of the powdered manganese nodule drops to about 1,570 and that of the bottom sediment to 1,310. The turbidity of Na-bentonite changes from 820 to 730 after 1 h and to 700 after 2 h. The viscosity of powdered manganese nodule is $1.4{\sim}1.5cP$, and the viscosity of bottom sediment is less than 1 cP. The viscosity fo Na-bentonite is initially 37.2 and increase with time to 86.4 cP after 30 min. The high initial turbidity of powdered manganese nodule is due to dark color of the powder. The high specific gravity makes rapid precipitation and then decreases the turbidity rapidly. The bottom sediment shows high initial turbidity because of easy suspension with very fine particle size. But it cannot be hydrated and formed gel in suspension, then it is easily precipitated. However Na-bentonite is hydrated to the expended state and makes gel state, then it shows high turbidity and high viscosity. These physical properties of the powdered manganese nodule suggest that the powder of manganese nodule should not make scaling inside of lifting pipe or pump. And the bottom sediment lifted up with manganese nodule should not play the role of drilling mud shch as Na-bentonite.

The Experimental Study of Predicting Optimum Dosage of PAC Using Jar-Test Results (Jar-Test를 이용(利用)한 응집제(凝集劑) 주입율(注入率) 결정(決定)에 관한 실험연구(實驗硏究))

  • Kim, Hong Seog;Kim, Seong Heon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.7 no.2
    • /
    • pp.39-46
    • /
    • 1993
  • In this experimental study, it is concerned to develop a simple equation using jar-test results in order to predict the optimum dosage of coagulant, PAC(polyaluminum chloride). Considering the relationships with the reactions of coagulation and flocculation, the four independent variables (e.g. turbidity, temperature, pH and alkalinity) are selected out of many parameters and they are put into calculations to develop an equation by means of multi-regression method. As the result, the dosing rate of PAC is proportional to turbidity, pH and alkalinity, but in inverse to temperature. And the developed equation is as follow, $$D_c=\frac{3.2{\cdot}T^{0.37}{\cdot}A^{0.04}{\cdot}P^{0.5}}{t^{0.1}},\;(R^2=0.9443)$$ And also, comparing between the estimated value from the equation and the real dosing rate in the plant, Kwangam and Tdukdo, during 1988~1991, it is represented an agreement having a relative error of 16.4%, 17.8%, respectively.

  • PDF