• Title/Summary/Keyword: and plasma display panel

Search Result 632, Processing Time 0.028 seconds

A Study on the New Discharge AND Gate and Drive Scheme for the Cost Down of the PDPs (PDP의 가격절감을 위한 새로운 방전 AND Gate 및 구동기술에 관한 연구)

  • 염정덕
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.6
    • /
    • pp.267-273
    • /
    • 2003
  • The plasma display panel with the electrode structure of new discharge AND gate and its driving scheme were proposed and the driving system for experiment was developed. And operation of these discharge AND gate was verified by the experiment of PDP addressing with floating electrode. This discharge AND gate operated by the operation speed of 8$mutextrm{s}$ and the operation margin of 100V. The address operation margin of 10V also obtained. It was known to be able to control the discharge of the adjoining scan electrode accurately. Because proposed method uses the DC discharge the control of the discharge can be facilitated compared with conventional discharge AND gate. Moreover, because the input discharge and the output discharge of discharge gate are separate, the display discharge can be prevented from passing discharge gates. Therefore, it is possible to apply to the large screen plasma display panel. And the decrease of contrast ratio does not occur because the scanning discharge does not influence the picture quality.

The Measurement of Three-Dimensional Temporal Behavior According to the Pressure in the Plasma Display Panel (플라즈마 디스플레이 패널에서 압력에 3차원 시간 분해 측정)

  • 최훈영;이석현;이승걸
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.476-480
    • /
    • 2003
  • In this paper, we have performed 3-dimensional time-resolving measurement of the Ne light emitted from the cell of plasma display panel(PDP) as a function of the pressure using the scanned point detecting system. From the temporal behavior results, we could analyze the discharge behavior of panel with Ne-Xe(4%) mixing gas and 300 torr, 400 torr and 500 torr pressure. At the top view of panel, the discharge of 300 torr panel starts at the 634 ns and ends at the 722 ns. The emission duration time is about 90 ns. The discharge of 400 torr panel starts at the 682 ns and ends at the 786 ns. the emission duration time is about 100 ns. Also, the discharge of 500 torr panel starts at the 770 ns and ends at the 826 ns. the emission duration time is about 56 ns. The discharge moves from inner edge of cathode electrode to outer cathode electrode forming arc type. In the side view of 300 torr, 400 torr and 500 torr an emission shows that the light is detected up to 180${\mu}{\textrm}{m}$, 150${\mu}{\textrm}{m}$ and 70${\mu}{\textrm}{m}$ height of barrier rib and the emission distribution of the 300 torr is wider than 400 torr, 500 torr.

A Simple ZVZCS Sustain Driver for a Plasma Display Panel

  • Yi Kang-Hyun;Han Sang-Kyoo;Choi Seong-Wook;Kim Chong-Eun;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.298-306
    • /
    • 2006
  • A high efficiency and low cost sustain driver for a plasma display panel (PDP) utilizing a current pumping method is proposed. The main concept of the proposed circuit is using the current source to charge and discharge the panel. As a result, all power switches can achieve zero voltage switching (ZVS) and every auxiliary switch can also achieve zero current switching (ZCS). Since the inductor current can compensate for the discharge current, the current stress of all the power switches can be reduced considerably. Furthermore, it has features such as a simpler structure, less mass, lower cost, and lower electromagnetic interference than in previous circuits.

Design of Driving methods of lower power consumption in Plasma AI(plasma adaptive intensifier) driving method (Plasma AI(plasma adaptive intensifier)구동의 전력 소모 개선을 위한 구동방식 설계)

  • Kim, Jun-Hyeong;O, Sun-Taek;Lee, Dong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.844-847
    • /
    • 2003
  • Display devices are becoming increasingly important as an interface between humans and machines in the growing information society. In display devices, PDP (Plasma Display Panel) has many advantages in that it has wide screen, wide viewing angle and is light weight, thin. In PDP driving method, if the brightness of input image is high, applying the fixed sustain pulse to the PDP panel will raise the PDP power consumption and may damages the PDP panel. To overcome these problems, the Plasma AI driving method was introduced by the Matshushita co. in Japan. The Plasma AI driving module calculates the peak value and average value of 1 frame image and adjusts the gradation and sustain pulses for 1 frame sustain. In this paper, the proposed PDP driving module is based on the Plasma AI driving module. The proposed driving module calculates peak value and average value, and the brightness distribution of 1 frame image. Using brightness distribution, the proposed driving module divides 1 frame input image into 15 image patterns. For each image pattern, minimum sustain pulses and sub-frames are used for the brightness of 1 frame image and the sustain weight for 64, 128, 192 gradation is proposed. Therefore, the sustain power consumption can be reduced.

  • PDF

Evaluation of the Electrical Resistance between ITO/black interlayer/Bus electrodes in a Plasma Display Panel (플라스마 디스플레이 패널에서 ITO/black interlayer/Bus 전극 간의 전기저항 평가)

  • Moon, Cheol Hee
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.97-104
    • /
    • 2008
  • Black interlayer was introduced into between ITO and Bus electrodes to enhance a bright room contrast ratio of a plasma display panel. To measure the electrical resistance of the black interlayer, we designed two test patterns, type I and type II, of which type II pattern was successful. Using type II test pattern, the electrical resistance of the black interlayer was measured to be $300{\Omega}$ for $2{\mu}m$ thickness case and infinitely high for 4, $6{\mu}m$ thickness. This result shows that electrical resistance of the black interlayer in the ITO/black interlayer/Bus electrodes structure is a critical parameter which determines the electrical characteristics of the PDP.

Low Cost Driving System for Plasma Display Panels by Eliminating Path Switches and Merging Power Switches

  • Lee, Dong-Myung;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.278-285
    • /
    • 2007
  • Recently, plasma display panels (PDP) have become the most promising candidate in the market for large screen size flat panel displays. PDPs have many merits such as a fast display response time and wide viewing angle. However, there are still concerns about high cost because they require complex driving circuits composed of high power switching devices to generate various voltage waveforms for three operational modes of reset, scan, and sustain. Conventional PDP driving circuits use path switches for voltage separation and a scan switch to offer a scan voltage for reset and scan operations, respectively. In addition, there exist reset switches to initialize PDPs by regulating the wall charge conditions with ramp shaped pulses, which means the necessity of specific power devices for the reset operation. Because power for the plasma discharge accompanied by a large current is transferred to a panel via path switches, high power rating switches are used for path switches. Therefore, this paper proposes a novel low-cost PDP driving scheme achieved by not only eliminating path switches but also merging the function of reset switches into other switches used for sustain or scan operations. The simulated voltage waveforms of the proposed topology and experimental results implemented in a 42-inch panel to demonstrate the validity of using a new gate driver that merges the functions of power switches are presented.

Analysis of Natural Convection Heat Transfer from Electronic Modules in a Plasma Display Panel (플라즈마 영상장치의 채널 사이에 놓인 전자모듈의 자연대류 열전달 해석)

  • Choi, In-Su;Park, Byung-Duck;Seo, Joo-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • The heat transfer characteristics of a plasma display panel has been investigated for cooling an electronic module. Hence, a two dimensional $\kappa-{\varepsilon}$ turbulent model was developed to predict the temperatures of the panel and module. The heat conduction was solve for the material region. To consider the mixed convection at the solid-fluid interfaces between the air and the panel and module, the energy equation was solved simultaneously. When the electronic module stands face to face with the panel, the temperatures of panel and module are lower than other arrangement due to the chimney effect. However the gap between the panel and module does not affect significantly the maximum temperature when the aspect ratio is less than 0.1. To maintain the maximum temperature of the module under a certain limit, the passage of air should be well designed by the optimal layout of electronic modules which have different heat emission.

  • PDF

Thermal characteristics variation of PDP in compliance with dielectric loss

  • Lee, Tae-Ho;Jung, Jae-Chul;Lee, Sang-Kuk;Kim, Joong-Kyun;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.265-268
    • /
    • 2009
  • The discharge condition of Plasma display panel(PDP) changes as the display time increases. Imaginary part of permittivity of dielectric material which is related to dielectric loss has been often neglected because of relatively small value compare to that of the real part. The thermal characteristics of PDPs with two different dielectrics has been studied and compared.

  • PDF

On the Cell Structure and Driving Method for High Efficiency Plasma Display Panel

  • Lee, Ho-Jun;Ok, Jung-Woo;Lee, Don-Kyu;Lee, Ji-Hoon;Lee, Hae-June;Kim, Dong-Hyun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1479-1482
    • /
    • 2006
  • Potentials and advantages of recently proposed raised bus electrode plasma display panel is discussed in terms of luminous efficiency, addressing speed. Detailed experimental and simulation results, which shows mechanisms of high efficiency driving mechanism, will also be given. Apart from the cell structure, we introduce new high efficiency driving method that can be applicable to conventional ac Plasma Display Panel.

  • PDF

Analysis on the Discharge Characteristics of AC Plasma Display Panel with Counter Sustain Electrodes (교류형 플라즈마 표시기의 신 대향형 구조에 대한 방전 특성 분석)

  • Bae, Hyun-Sook;Whang, Ki-Woong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1579-1583
    • /
    • 2008
  • We proposed the new structure of ac plasma display panel(PDP) to improve the luminous efficacy and driving voltage characteristics. Through two-dimensional numerical simulations, we analyzed the effects of new counter discharge type, which consists of counter sustain electrodes and auxiliary electrodes. Generally, an advantage of AC PDP with the counter sustain electrodes has been known for the driving characteristics of the low voltage. In this work, the new counter structure using the ignition discharge by the auxiliary pulse applied to the address electrode showed the result of the increased luminous efficacy. The short gap discharge between two auxiliary electrodes on the front plate could intensity the long gap discharge between counter electrodes. The reliability of simulation result could be confirmed by the experimental result in the test panel.