• Title/Summary/Keyword: and object location

Search Result 1,062, Processing Time 0.029 seconds

Effects of Load Center of Gravity and Feet Positions on Peak EMG Amplitude at Low Back Muscles While Lifting Heavy Materials (중량물 들기 작업시 물체 무게중심 및 발의 위치가 허리 근육의 최대 EMG 진폭에 미치는 영향)

  • Kim, Sun-Uk;Han, Seung Jo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.257-264
    • /
    • 2012
  • Objectives: This study's aims were to evaluate the effects of load center of gravity within an object lifted and feet placements on peak EMG amplitude acting on bilateral low back muscle groups, and to suggest adequate foot strategies with an aim to reducing low back pain incidence while lifting asymmetric load. Methods: The hypotheses that asymmetric load imposes more peak EMG amplitude on low back muscles contralateral to load center of gravity than symmetric load and maximum peak EMG amplitude out of bilateral ones can be relieved by locating one foot close to load center of gravity in front of the other were established based on biomechanics including safety margin model and previous researches. 11 male subjects were required to lift symmetrically a 15.8kg object during 2sec according to each conditions; symmetric load-parallel feet (SP), asymmetric load-parallel feet (AP), asymmetric load-one foot contralateral to load center of gravity in front of the other (AL), and asymmetric load-one foot ipsilateral to load center of gravity in front of the other (AR). Bilateral longissimus, iliocostalis, and multifidus on right and left low back area were selected as target muscles, and asymmetric load had load center of gravity 10cm deviated to the right from the center in the frontal plane. Results: Greater peak EMG amplitude in left muscle group than in right one was observed due to the effect of load center of gravity, and mean peak EMG amplitudes on both sides was not affected by load center of gravity because of EMG balancing effect. However, the difference of peak EMG amplitudes between both sides was significantly affected by it. Maximum peak EMG amplitude out of both sides and the difference of peak EMG amplitude between both sides could be reduced with keeping one foot ipsilateral to load center of gravity in front of the other while lifting asymmetric load. Conclusions: It was likely that asymmetric load lead to the elevated incidence of low back pain in comparison with symmetric load based on maximum peak EMG amplitude occurrence and greater imbalanced peak EMG amplitude between both sides. Changing feet positions according to the location of load center of gravity was suggested as one intervention able to reduce the low back pain incidence.

A Study on the Slit Jade Earring Excavated in the Korean Peninsula (한반도 출토 결상이식(玦狀耳飾) 소고)

  • Lim, Seng Kyeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.4
    • /
    • pp.4-21
    • /
    • 2012
  • Jade ornaments, which include slit earrings, scoop-shaped objects and tubular beads have been extensively identified in Northeast Asia, such as Korea, China, Japan and the Maritime Province of Siberia. Among them slit earrings are distributed in the whole area of Northeast Asia. Although this object shows the typological differences in accordance with the excavated region in detail, all of them are characterised by the slit on the centre of jade ring. The buried context and the shape of this object suggest that this artefact was the earring; thus it is named to 'slit earring'. Most of slit earrings of the Neolithic Age concentrate in Northeast China and the areas south of the Yangtze River, and the Japanese Archipelago. However, unfortunately, Slit earrings, which were produced in the tradition of the incipient and early phases of the Neolithic Age in Northeast Asia, have not been excavated in the Korean Peninsula. The number of slit earrings reported so far is eight, and especially until the 20th century, almost none was reported with its exact excavation location and only three of them are known as excavated through surface surveys and preliminary excavations. However, from the beginning of the 21st century onwards, the number of discovered slit earrings is increasing. Particularly, five pieces of this object uncovered in the 21st century are discovered in the official excavation; thus the exact archaeological context such as buried locations and chronologies could be estimated. By considering the buried context, slit earrings are associated with stone axes, which were produced in the incipient and early phase of the Neolithic Age in the Korean Peninsula. In addition, considering the number of unearthed objects is a few, it could be postulate that slit earring was the artefact that only a few persons, who had a special role in the society, could possess. However, slit jade earrings that have been excavated in the Korean Peninsula are extremely low in their number compared to the cases of its neighbouring countries such as China and Japan, and the researches on this subject have not been much conducted in Korea. Therefore, it is my supposition that slit earrings, which have been discovered in the Korean Peninsula, might be the imported item from the nearby areas. Particularly, the Southern Coast was closely connected with Japanese Islands and the Eastern Coast was interchanged with Northeast China or the Maritime Province of Siberia. Considering that excavations and researches on the Neolithic remains in the Korean Peninsula have not been sufficiently and actively conducted, it could be expected that the further investigations and researches will reveal the sufficient quantities of slit earrings in near future.

Automated Construction Progress Management Using Computer Vision-based CNN Model and BIM (이미지 기반 기계 학습과 BIM을 활용한 자동화된 시공 진도 관리 - 합성곱 신경망 모델(CNN)과 실내측위기술, 4D BIM을 기반으로 -)

  • Rho, Juhee;Park, Moonseo;Lee, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.5
    • /
    • pp.11-19
    • /
    • 2020
  • A daily progress monitoring and further schedule management of a construction project have a significant impact on the construction manager's decision making in schedule change and controlling field operation. However, a current site monitoring method highly relies on the manually recorded daily-log book by the person in charge of the work. For this reason, it is difficult to take a detached view and sometimes human error such as omission of contents may occur. In order to resolve these problems, previous researches have developed automated site monitoring method with the object recognition-based visualization or BIM data creation. Despite of the research results along with the related technology development, there are limitations in application targeting the practical construction projects due to the constraints in the experimental methods that assume the fixed equipment at a specific location. To overcome these limitations, some smart devices carried by the field workers can be employed as a medium for data creation. Specifically, the extracted information from the site picture by object recognition technology of CNN model, and positional information by GIPS are applied to update 4D BIM data. A standard CNN model is developed and BIM data modification experiments are conducted with the collected data to validate the research suggestion. Based on the experimental results, it is confirmed that the methods and performance are applicable to the construction site management and further it is expected to contribute speedy and precise data creation with the application of automated progress monitoring methods.

Evaluation of Cavity Characterization Using Infrared Thermal Images (적외선 이미지를 이용한 지하공동 평가)

  • Jang, Byeong-Su;Kim, Young-Seok;Kim, Se-Won ;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.69-76
    • /
    • 2023
  • Cavity causes settlement and its remediation after an accident results in significant time and economic losses. This study aims to experimentally evaluate the prospect of using infrared camera to detect and measure underground subsidence. Emissivity is necessary to detect the energy emitted from an object and accurately assess temperature using an infrared camera. The emissivity in laboratory tests is fixed to evaluate a reasonable distance between the infrared camera and the object, and temperature values are assessed at various distances. In field experiments, the cavity of the field experiment is simulated using a PVC pipe with a diameter of 5 cm, artificially buried at depths of 5 and 25 cm from the surface. The infrared camera measurements are taken from 4 PM to 3 PM of the next day (a total of 23 h). The analysis included the time-series temperature distribution and the cooling rate index assessment, which represents the temperature change rate per unit of time. The results showed that various temperature trends are observed depending on the location of the subsidence. This study demonstrates that the infrared camera can be used to assess the condition of the subsurface.

A Study on Automated Input of Attribute for Referenced Objects in Spatial Relationships of HD Map (정밀도로지도 공간관계 참조객체의 속성 입력 자동화에 관한 연구)

  • Dong-Gi SUNG;Seung-Hyun MIN;Yun-Soo CHOI;Jong-Min OH
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.1
    • /
    • pp.29-40
    • /
    • 2024
  • Recently, the technology of autonomous driving, one of the core of the fourth industrial revolution, is developing, but sensor-based autonomous driving is showing limitations, such as accidents in unexpected situations, To compensate for this, HD-map is being used as a core infrastructure for autonomous driving, and interest in the public and private sectors is increasing, and various studies and technology developments are being conducted to secure the latest and accuracy of HD-map. Currently, NGII will be newly built in urban areas and major roads across the country, including the metropolitan area, where self-driving cars are expected to run, and is working to minimize data error rates through quality verification. Therefore, this study analyzes the spatial relationship of reference objects in the attribute structuring process for rapid and accurate renewal and production of HD-map under construction by NGII, By applying the attribute input automation methodology of the reference object in which spatial relations are established using the library of open source-based PyQGIS, target sites were selected for each road type, such as high-speed national highways, general national highways, and C-ITS demonstration sections. Using the attribute automation tool developed in this study, it took about 2 to 5 minutes for each target location to automatically input the attributes of the spatial relationship reference object, As a result of automation of attribute input for reference objects, attribute input accuracy of 86.4% for high-speed national highways, 79.7% for general national highways, 82.4% for C-ITS, and 82.8% on average were secured.

Research to improve the performance of self localization of mobile robot utilizing video information of CCTV (CCTV 영상 정보를 활용한 이동 로봇의 자기 위치 추정 성능 향상을 위한 연구)

  • Park, Jong-Ho;Jeon, Young-Pil;Ryu, Ji-Hyoung;Yu, Dong-Hyun;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6420-6426
    • /
    • 2013
  • The indoor areas for the commercial use of automatic monitoring systems of mobile robot localization improves the cognitive abilities and the needs of the environment with this emerging and existing mobile robot localization, and object recognition methods commonly around its great sensor are leveraged. On the other hand, there is a difficulty with a problem-solving self-location estimation in indoor mobile robots using only the sensors of the robot. Therefore, in this paper, a self-position estimation method for an enhanced and effective mobile robot is proposed using a marker and CCTV video that is already installed in the building. In particular, after recognizing a square mobile robot and the object from the input image, and the vertices were confirmed, the feature points of the marker were found, and marker recognition was then performed. First, a self-position estimation of the mobile robot was performed according to the relationship of the image marker and a coordinate transformation was performed. In particular, the estimation was converted to an absolute coordinate value based on CCTV information, such as robots and obstacles. The study results can be used to make a convenient self-position estimation of the robot in the indoor areas to verify the self-position estimation method of the mobile robot. In addition, experimental operation was performed based on the actual robot system.

Flying Cake: An Augmented Game on Mobile Device (Flying Cake: 모바일 단말기를 이용한 실감형 게임)

  • Park, An-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.79-94
    • /
    • 2007
  • In the ubiquitous computing age which uses a high quantity network, mobile devices such as wearable and hand-held ones with a small tamers and a wireless communication module will be widely used in near future. Thus, a lot of researches about an augmented game on mobile devices have been attempted recently. The existing augmented games used a traditional 'backpack' system and a pattern marker. The 'backpack' system is expensive, cumbersome and inconvenient to use, and because of the pattern marker, it is only possible to play the game in the previously installed palace. In this paper, we propose an augmented game called Flying Cake using a face region to create the virtual object(character) without the pattern marker, which manually indicates an overlapped location of the virtual object in the real world, on a small and mobile PDA instead of the cumbersome hardware. Flying Cake is an augmented shooting game. This game supplies us with two types: 1) a single player which attacks a virtual character on images captured by a camera in an outdoor physical area, 2) dual players which attack the virtual character on images which we received through a wireless LAN. We overlap the virtual character on the face region using a face detection technique, and users play Flying Cake though attacking the virtual character. Flying Cake supplies new pleasure to flayers with a new game paradigm through an interaction between the user in the physical world captured by the PDA camera and the virtual character in a virtual world using the face detection.

Classification of Industrial Parks and Quarries Using U-Net from KOMPSAT-3/3A Imagery (KOMPSAT-3/3A 영상으로부터 U-Net을 이용한 산업단지와 채석장 분류)

  • Che-Won Park;Hyung-Sup Jung;Won-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1679-1692
    • /
    • 2023
  • South Korea is a country that emits a large amount of pollutants as a result of population growth and industrial development and is also severely affected by transboundary air pollution due to its geographical location. As pollutants from both domestic and foreign sources contribute to air pollution in Korea, the location of air pollutant emission sources is crucial for understanding the movement and distribution of pollutants in the atmosphere and establishing national-level air pollution management and response strategies. Based on this background, this study aims to effectively acquire spatial information on domestic and international air pollutant emission sources, which is essential for analyzing air pollution status, by utilizing high-resolution optical satellite images and deep learning-based image segmentation models. In particular, industrial parks and quarries, which have been evaluated as contributing significantly to transboundary air pollution, were selected as the main research subjects, and images of these areas from multi-purpose satellites 3 and 3A were collected, preprocessed, and converted into input and label data for model training. As a result of training the U-Net model using this data, the overall accuracy of 0.8484 and mean Intersection over Union (mIoU) of 0.6490 were achieved, and the predicted maps showed significant results in extracting object boundaries more accurately than the label data created by course annotations.

Change Detection Using Deep Learning Based Semantic Segmentation for Nuclear Activity Detection and Monitoring (핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지)

  • Song, Ahram;Lee, Changhui;Lee, Jinmin;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.991-1005
    • /
    • 2022
  • Satellite imaging is an effective supplementary data source for detecting and verifying nuclear activity. It is also highly beneficial in regions with limited access and information, such as nuclear installations. Time series analysis, in particular, can identify the process of preparing for the conduction of a nuclear experiment, such as relocating equipment or changing facilities. Differences in the semantic segmentation findings of time series photos were employed in this work to detect changes in meaningful items connected to nuclear activity. Building, road, and small object datasets made of KOMPSAT 3/3A photos given by AIHub were used to train deep learning models such as U-Net, PSPNet, and Attention U-Net. To pick relevant models for targets, many model parameters were adjusted. The final change detection was carried out by including object information into the first change detection, which was obtained as the difference in semantic segmentation findings. The experiment findings demonstrated that the suggested approach could effectively identify altered pixels. Although the suggested approach is dependent on the accuracy of semantic segmentation findings, it is envisaged that as the dataset for the region of interest grows in the future, so will the relevant scope of the proposed method.

Development for the Azimuth Measurement Algorithm using Multi Sensor Fusion Method (멀티센서 퓨전 기법을 활용한 방위 측정 알고리즘의 설계)

  • Kim, Tae-Yeong;Kim, Young-Chul;Song, Moon-Kyou;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.865-871
    • /
    • 2011
  • Presently, the location and direction information are certainly needed for the autonomous vehicle of the ship. Among them, the direction information is a essential elements to automatic steering system. And the gyro-compass, the magnetic-compass and the GPS compass are the sensor indicating the direction. The gyro-compasses are mainly used in the large-sized ship of the GMDSS(Global Maritime Distress & Safety System). The precision and the reliability of the gyro-compasses are excellent but big volume and high price are disadvantage. The magnetic-compass has relatively fine precision and inexpensive price. However, the disadvantage is in the influence by the magnetism object including the steel structure of a ship, and etc. In the case of the GPS compass, the true north is indicated according to the change of the location information but in case of the minimum number of satellites or stopping of a ship or exercise in the error range, the exact direction cannot be obtained. In this paper, the performance of the GPS compass was improved by using the least-square curve fitting method for the mutual trade off of the angle sensor. The algorithm which improves the precision of an azimuth by applying the weighted value according to the size of covariance error was proposed with GPS-compass and magnetic compass. The characteristic and the performance of the proposed algorithm were analyzed and verified through experimentation. The applicability of the proposed algorithm was shown through the experimental result.