Acknowledgement
본 연구는 과학기술정보통신부의 한국연구재단(NRF-2020R1A2C2012113)과 국토교통부 국토 교통과학기술진흥원 북극권 자원에너지 개발 기초(선행)기술의 "북극권 에너지자원 플랜트 계획 및 개념설계 선행기술 연구(과제번호: RS-2018-KA146546)사업의 지원으로 수행 되었으며 이에 감사드립니다.
References
- Abdel-Hardy, M. (1970, February), Subsurface drainage mapping by airborne infrared imagery techniques, In Proceedings of the Oklahoma Academy of Science, 10-18.
- Avdelidis, N. P. and Moropoulou, A. (2003), Emissivity Considerations in Building Thermography, Energy and Buildings, Vol.35, No.7, pp.663-667. https://doi.org/10.1016/S0378-7788(02)00210-4
- Bae, Y. S., Kim, K. T., and Lee, S. Y. (2017), The Road Subsidence Status and Safety Improvement Plans, Journal of the Korea Academia-Industrial cooperation Society, Vol.18, No.1, pp.545-552. https://doi.org/10.5762/KAIS.2017.18.1.545
- Cho, N. J., Cha, W., and Kim, H. K. (2016), Non-destructive Detection of Underground Cavities Using Thermal Images, Electron. J. Geotech. Eng, Vol.21, No.16, pp.5465-5476.
- Du, Y., Zhang, X., Li, F., and Sun, L. (2017), Detection of Crack Growth in Asphalt Pavement through Use of Infrared Imaging, Transportation Research Record, Vol.2645, No.1, pp.24-31. https://doi.org/10.3141/2645-03
- Go, G. H. and Lee, S. J. (2021), A Study on Numerical Analysis for GPR Signal Characterization of Tunnel Lining Cavities, Journal of the Korean Geotechnical Society, Vol.37, No.10, pp.65-76. https://doi.org/10.7843/KGS.2021.37.10.65
- Hong, W. T., Kang, S., and Lee, J. S. (2015), Application of Ground Penetrating Radar for Estimation of Loose Layer, Journal of the Korean Geotechnical Society, Vol.31, No.11, pp.41-48. https://doi.org/10.7843/kgs.2015.31.11.41
- Janku, M., Cikrle, P., Grosek, J., Anton, O., and Stryk, J. (2019), Comparison of Infrared Thermography, Ground-penetrating Radar and Ultrasonic Pulse Echo for Detecting Delaminations in Concrete Bridges, Construction and Building Materials, 225, pp.1098-1111. https://doi.org/10.1016/j.conbuildmat.2019.07.320
- Kalhor, D., Ebrahimi, S., Tokime, R. B., Mamoudan, F. A., Belanger, Y., Mercier, A., and Maldague, X. (2021), Cavity Detection in Steel-pipe Culverts Uing Infrared Thermography, Applied Sciences, Vol.11, No.9, 4051.
- Kwak, T. Y., Chung, C. K., Kim, J., Lee, M., and Woo, S. I. (2019), Experimental Assessment for the Effect of Burial Depth on the Formation of Underground Cavities and Ground Cave-ins by Damaged Sewer Pipes, Journal of the Korean Geotechnical Society, Vol.35, No.11, pp.37-49. https://doi.org/10.7843/KGS.2019.35.11.37
- Kim, C. R., Kim, J. H., Park, Y. S., Park, S. G., Yi, M. J., Son, J. S., ... and Jeong, J. M. (2005), Application of Geophysical Methods to Cavity Detection at the Ground Subsidence Area, In Proceedings of the Korean Geotechical Society Conference (pp. 376-383), Korean Geotechnical Society.
- Kim, H. S. and Kim, H. K. (2015), Application of Soil Surface Infrared Images for Geotechnical Non-destructive Testing Method, Journal of the Korean Society of Hazard Mitigation, Vol.15, No.3, pp.249-254. https://doi.org/10.9798/KOSHAM.2015.15.3.249
- Kim, Y. T., Choi, J. Y., Kim, K. D., and Park, H. M. (2017), A Study on the Selection of GPR Type Suitable for Road Cavity Detection, International Journal of Highway Engineering, Vol.19, No.5, pp.69-75.
- Kulkarni, N. N., Dabetwar, S., Benoit, J., Yu, T., and Sabato, A. (2022), Comparative Analysis of Infrared Thermography Processing Techniques for Roadways' Sub-pavement Voids Detection, NDT & E International, 129, 102652.
- Lee, D. Y. and Cho, N. K. (2016), Understanding of Subsurface Cavity Mechanism due to the Deterioration of Buried Pipe, Journal of the Korean Geotechnical Society, Vol.32, No.12, pp.33-43. https://doi.org/10.7843/kgs.2016.32.12.33
- Liu, I. S. (1990), On Fourier's Law of Heat Conduction, Continuum Mechanics and Thermodynamics, 2, pp.301-305. https://doi.org/10.1007/BF01129123
- Pappalardo, G., Mineo, S., Zampelli, S. P., Cubito, A., and Calcaterra, D. (2016), InfraRed Thermography Proposed for the Estimation of the Cooling Rate Index in the Remote Survey of Rock Masses, International Journal of Rock Mechanics and Mining Sciences, 83, 182-196. https://doi.org/10.1016/j.ijrmms.2016.01.010
- Sabato, A., Yu, T., Kulkarni, N. N., and Dabetwar, S. (2022), Detecting Subsurface Voids in Roadways Using UAS with Infrared Thermal Imaging (No. 22-025). Massachusetts. Dept. of Transportation. Office of Transportation Planning.
- Shakmak, B. and Al-Habaibeh, A. (2015, November), Detection of water leakage in buried pipes using infrared technology; A comparative study of using high- and low-resolution infrared cameras for evaluating distant remote detection. In 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT) (pp. 1-7). IEEE.
- Shin, H. and Hong, S. S. (2022), Thermo-hydraulic Numerical Analysis for the Leakage of Buried District Heating Pipe, Journal of the Korean Geotechnical Society, Vol.38, No.3, pp.17-26. https://doi.org/10.7843/KGS.2022.38.3.17
- Song, S., Kim, H., Park, D., Kang, J., and Choi, C. (2016), Assessment of Impact-echo Method for Cavity Detection in Dorsal Side of Sewer Pipe, Journal of the Korean Geotechnical Society, Vol.32, No.8, pp.5-14. https://doi.org/10.7843/KGS.2016.32.8.5
- Tran, Q. H., Han, D., Kang, C., Haldar, A., and Huh, J. (2017), Effects of Ambient Temperature and Relative Humidity on Subsurface Defect Detection in Concrete Structures by Active Thermal Imaging, Sensors, Vol.17, No.8, 1718.