• Title/Summary/Keyword: and object location

Search Result 1,062, Processing Time 0.027 seconds

Implementation of Extended TB-Trees Based on Direct Table for Indexing Trajectories of Moving Objects in LBS Applications (LBS 응용에서 이동 객체의 궤적 색인을 위한 직접 테이블 기반의 확장된 TB-트리의 구현)

  • Shin Yong-Won;Park Byung-Rae;Shim Choon-Bo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.2
    • /
    • pp.187-197
    • /
    • 2005
  • In this paper, we propose an extended TB-tree, called ETB-tree, which can improve the performance of an existing TB-tree proposed for indexing the trajectories of moving objects in Location-Based Service(LBS). The proposed ETB-tree directly accesses the preceding node by maintaining a direct table, called D-Table which contains the page number in disk and memory pointers pointing the leaf node with the first and last lines segment of moving objects. It can improve the insertion performance by quick searching the preceding node of a moving object and retrieval performance owing to accessing directly the corresponding trajectories In disk for the trajectory-based query. In addition, the ETB-tree provides consistency of a tree by reflecting a newly inserted line segment to the tree both in memory and disk. The experimental results show that the proposed indexing technique gains better performance than other traditional ones with respect to the insertion and retrieval of a trajectory query.

  • PDF

Robust Depth Measurement Using Dynamic Programming Technique on the Structured-Light Image (구조화 조명 영상에 Dynamic Programming을 사용한 신뢰도 높은 거리 측정 방법)

  • Wang, Shi;Kim, Hyong-Suk;Lin, Chun-Shin;Chen, Hong-Xin;Lin, Hai-Ping
    • Journal of Internet Computing and Services
    • /
    • v.9 no.3
    • /
    • pp.69-77
    • /
    • 2008
  • An algorithm for tracking the trace of structured light is proposed to obtain depth information accurately. The technique is based on the fact that the pixel location of light in an image has a unique association with the object depth. However, sometimes the projected light is dim or invisible due to the absorption and reflection on the surface of the object. A dynamic programming approach is proposed to solve such a problem. In this paper, necessary mathematics for implementing the algorithm is presented and the projected laser light is tracked utilizing a dynamic programming technique. Advantage is that the trace remains integrity while many parts of the laser beam are dim or invisible. Experimental results as well as the 3-D restoration are reported.

  • PDF

Internal Object Detection Monitoring System in Reinforced Concrete Structure using UWB-RF (UWB-RF를 이용한 콘크리트 구조물의 내부 물체 검출 모니터링 시스템)

  • Park, Dae-Hyuck;Kang, Eui-Sun
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1457-1464
    • /
    • 2017
  • This paper is to introduce the a system which monitors and detects the object position in reinforced the concrete structure using UWB-RF. This system is able to check any changes in the inside of the concrete structure using its penetration and reflection characteristics and it can also numerically measure the position of rebar in the concrete structure. For the verification of the performance of this system, we set up the internal compositions of concrete in 3 different types of test-bed. On the other hand, for the measuring of the location of rebar, which varies depending on the type of structure, the software which shows the distance in the structure were used. The result shows that the position in the concrete could be measured within the tolerance of ${\pm}1{\sim}4mm$ depending on the type of structure in the concrete.

A k-NN Query Processing Method based on Distance Relation Patterns in Moving Object Environments (이동 객체 환경에서 거리 관계 패턴 기반 k-최근접 질의 처리 기법)

  • Park, Yong-Hun;Seo, Dong-Min;Bok, Kyoung-Soo;Lee, Byoung-Yup;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.36 no.3
    • /
    • pp.215-225
    • /
    • 2009
  • Recently, various methods have been proposed to process k-NN (k-Nearest Neighbors) queries efficiently. However the previous methods have problems that they access additional cells unnecessarily and spend the high computation cost to find the nearest cells. In this paper, to overcome the problems, we propose a new method to process k-NN queries using the patterns of the distance relationship between the cells in a grid. The patterns are composed of the relative coordinates of cells sorted by the distance from certain points. Since the proposed method finds the nearest cells to process k-NN queries with traversing the patterns sequentially, it saves the computation cost. It is shown through the various experiments that out proposed method is much better than the existing method, CPM, in terms of the query processing time and the storage overhead.

Range Query Processing using Space and Time Filtering in Fixed Grid Indexing (고정 그리드 인덱싱에서 공간과 시간 필터링을 이용한 범위 질의 처리)

  • Jeon, Se-Gil;Nah, Yun-Mook
    • The KIPS Transactions:PartD
    • /
    • v.11D no.4
    • /
    • pp.835-844
    • /
    • 2004
  • Recently, the location-based service for moving customers is becoming one of the most important service in mobile communication area. For moving object applications, there are lots of update operations and such update loads are concentrated on some particular area unevenly. Range queries, whose range can be window or circular, are the most essential query types in LBS. We need to distinguish completely contained cells from partially contained cells in those range queries. Also, it is necessary to consider temporal dimension to filter out qualifying objects correctly. In this paper, we adopt two-level index structures with fixed grid file structures in the second level, which are designed to minimize update operations. We propose a spatial ceil filtering method using VP filtering and a combined spatio-temporal filtering method using time gone concepts. Some experimental results are shown for various window queries and circular queries with different filtering combinations to show the performance tradeoffs of the proposed methods.

A Study on Development of Indoor Object Tracking System Using N-to-N Broadcasting System (N-to-N 브로드캐스팅 시스템을 활용한 실내 객체 위치추적 시스템 개발에 관한 연구)

  • Song, In seo;Choi, Min seok;Han, Hyun jeong;Jeong, Hyeon gi;Park, Tae hyeon;Joeng, Sang won;Kwon, Jang woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.192-207
    • /
    • 2020
  • In industrial fields like big factories, efficient management of resources is critical in terms of time and expense. So, inefficient management of resources leads to additional costs. Nevertheless, in many cases, there is no proper system to manage resources. This study proposes a system to manage and track large-scale resources efficiently. We attached Bluetooth 5.0-based beacons to our target resources to track them in real time, and by saving their transportation data we can understand flows of resources. Also, we applied a diagonal survey method to estimate the location of beacons so we are able to build an efficient and accurate system. As a result, We achieve 47% more accurate results than traditional trilateration method.

Development of Augmented Reality Character System based on Markerless Tracking (마커리스 트래킹 기반 증강현실 캐릭터 시스템 개발)

  • Hyun, Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1275-1282
    • /
    • 2022
  • In this study, real-time character navigation using AR lens developed by Nreal is developed. Real-time character navigation is not possible with general marker-based AR because NPC characters must guide while moving in an unspecified space. To replace this, a markerless AR system was developed using Digital Twin technology. Existing markerless AR is operated based on hardware such as GPS, gyroscope, and magnetic sensor, so location accuracy is low and processing time in the system is long, resulting in low reliability in real-time AR environment. In order to solve this problem, using the SLAM technique to construct a space into a 3D object and to construct a markerless AR based on point location, AR can be implemented without any hardware intervention in a real-time AR environment. This real-time AR environment configuration made it possible to implement a navigation system using characters in tourist attractions such as Suncheon Bay Garden and Suncheon Drama Filming Site.

AR-Based Character Tracking Navigation System Development (AR기반 캐릭터 트래킹 네비게이션 시스템 개발)

  • Lee, SeokHwan;Lee, JungKeum;Sim, Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.325-332
    • /
    • 2022
  • In this study, real-time character navigation using AR lens developed by Nreal is developed. Real-time character navigation is not possible with general marker-based AR because NPC characters must guide while moving in an unspecified space. To replace this, a markerless AR system was developed using Digital Twin technology. Existing markerless AR is operated based on hardware such as GPS, gyroscope, and magnetic sensor, so location accuracy is low and processing time in the system is long, which results low reliability in real-time AR environment. In order to solve this problem, using the SLAM technique to construct a space into a 3D object and to construct a markerless AR based on point location, AR can be implemented without any hardware intervention in a real-time AR environment. This real-time AR environment configuration made it possible to implement a navigation system using characters in tourist attractions such as Suncheon Bay Garden and Suncheon Drama Filming Site.

Velocity Estimation of Moving Targets on the Sea Surface by Azimuth Differentials of Simulated-SAR Image

  • Yang, Chang-Su;Kim, Youn-Seop;Ouchi, Kazuo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.297-304
    • /
    • 2010
  • Since the change in Doppler centroid according to moving targets brings alteration to the phase in azimuth differential signals of synthetic aperture radar (SAR) data, one can measure the velocity of the moving targets using this effect. In this study, we will investigate theoretically measuring the velocity of an object from azimuth differential signals by using range compressed data which is the interim outcome of treatment from the simulated SAR raw data of moving targets on the background of sea clutter. Also, it will provide evaluation for the elements that affect the estimation error of velocity from a single SAR sensor. By making RADARSAT-1 simulated image as a specific case, the research includes comparisons for the means of velocity measurement classified by the directions of movement in the four following cases. 1. A case of a single target without currents, 2. A case of a single target with tidal currents of 0.5 m/s, 1 m/s, and 3 m/s, 3. A case of two targets on a same azimuth line moving in a same direction and velocity, 4. A case of a single target contiguous to land where radar backscatter is strong. As a result, when two moving targets exist in SAR image outside the range of approximately 256 pixels, the velocity of the object can be measured with high accuracy. However, when other moving targets exist in the range of approximately 128 pixels or when the target was contiguous to the land of strong backscatter coefficient (NRCS: normalized radar cross section), the estimated velocity was in error by 10% at the maximum. This is because in the process of assuming the target's location, an error occurs due to the differential signals affected by other scatterers.

Tracking Analysis of Unknown Space Objects in Optical Space Observation Systems (광학 우주 관측 시스템의 미지 우주물체 위치 추적 분석)

  • Hyun, Chul;Lee, Sangwook;Lee, Hojin;Park, Seung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1826-1834
    • /
    • 2021
  • In this paper, we check the possibility of continuous tracking when photographing unknown space objects in a short period of time in an optical observation system on the ground. Simulated observation data were generated for target limited to low-orbit areas. The performance index of the prediction error was set in consideration of the property of targets. Kalman Filter was applied to predict the next location of the target. A constant velocity/acceleration dynamic model was applied to the two axes of the azimuth/elevation of the unknown space object respectively. As a result of performing the Monte Carlo simulation, the maximum error ratio of the maximum nonlinear section was less than 2%, which could be determined to ensure continuous tracking. The CA model had little change in the prediction error value for each case, making it more suitable for tracking unknown space objects. This analysis could provide a foundation for determining the orbit of unknown space objects using optical observation.