• Title/Summary/Keyword: and object location

Search Result 1,062, Processing Time 0.034 seconds

Efficient Processing using Static Validity Circle for Continuous Skyline Queries (연속적인 스카이라인 질의의 정적 유효 영역을 이용한 효율적인 처리)

  • Li, Zhong-He;Park, Young-Bae
    • Journal of KIISE:Databases
    • /
    • v.33 no.6
    • /
    • pp.631-643
    • /
    • 2006
  • Moving objects in a mobile environment to change their position based on the change of time require a query with their position as a basis. Efficient Regional Decision for Continuous Skyline Queries requires objectively pre-calculating the OSR(Optimal Skyline Region) regardless of the speed and direction of the moving objects. It proposes techniques to reduce the frequency of continuous queries by choosing a VCircle(Validity Circle) as safe location which has radius of the distance to the closest region with position on the moving object at center. But, a VCircle's area varies based on the Moving object's position from first marked time of continuous query. Therefore, the frequency of its continuous query is variable and also when the object moves inside of OSR, query can re-occur frequently In this paper, we suggest a technique of selecting an IVCircle(Interior Validity Circle) in a Skyline Region as the static Safe Region using the characteristics of the OSR. An Interior IVCircle can be calculated in advance when the OSR is decided. Our experiment shows that the frequency of using IVcircle as safe region reduced than that of using VCircle as safe region by 52.55%.

Advanced Indoor Location Tracking Using RFID (RFID를 이용한 개선된 실내 위치 추적)

  • Joo, Won-lee;Kim, Hyo-Sun;Jung, Yeong-Ah;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.425-430
    • /
    • 2017
  • RFID is a technology that uses radio frequency to read information in tags attached to objects or people. Because it reads the information without contact when tracking the location using tags in a RFID system, there can be errors between the actual position and measured position. In this paper, three methods (the method of radiation pattern, the method of the median value, and the method using both the radiation pattern and median value) are proposed to identify the location of objects or people using the RFID technique. The location identification system based on RFID was constructed and tags were arranged in a square pattern. The real location and experimentally predicted location of an object containing a reader were compared to confirm the error. Instead of the existing papers that obtained the approximately location of a reader by calculating the center of gravity of all tags read by that reader, in this study, the predicted location was obtained by the median value and the radiation pattern. This study validated which method was the most efficient among the three methods proposed in this paper through the data of the read tags. As a result, the method of the median value had the smallest error among those assessed.

Quality Enhancement of 3D Volumetric Contents Based on 6DoF for 5G Telepresence Service

  • Byung-Seo Park;Woosuk Kim;Jin-Kyum Kim;Dong-Wook Kim;Young-Ho Seo
    • Journal of Web Engineering
    • /
    • v.21 no.3
    • /
    • pp.729-750
    • /
    • 2022
  • In general, the importance of 6DoF (degree of freedom) 3D (dimension) volumetric contents technology is emerging in 5G (generation) telepresence service, Web-based (WebGL) graphics, computer vision, robotics, and next-generation augmented reality. Since it is possible to acquire RGB images and depth images in real-time through depth sensors that use various depth acquisition methods such as time of flight (ToF) and lidar, many changes have been made in object detection, tracking, and recognition research. In this paper, we propose a method to improve the quality of 3D models for 5G telepresence by processing images acquired through depth and RGB cameras on a multi-view camera system. In this paper, the quality is improved in two major ways. The first concerns the shape of the 3D model. A method of removing noise outside the object by applying a mask obtained from a color image and a combined filtering operation to obtain the difference in depth information between pixels inside the object were proposed. Second, we propose an illumination compensation method for images acquired through a multi-view camera system for photo-realistic 3D model generation. It is assumed that the three-dimensional volumetric shooting is done indoors, and the location and intensity of illumination according to time are constant. Since the multi-view camera uses a total of 8 pairs and converges toward the center of space, the intensity and angle of light incident on each camera are different even if the illumination is constant. Therefore, all cameras take a color correction chart and use a color optimization function to obtain a color conversion matrix that defines the relationship between the eight acquired images. Using this, the image input from all cameras is corrected based on the color correction chart. It was confirmed that the quality of the 3D model could be improved by effectively removing noise due to the proposed method when acquiring images of a 3D volumetric object using eight cameras. It has been experimentally proven that the color difference between images is reduced.

A Study on the Smart Care System Using Real-time Object Tracking Technology (실시간 객체 추적 기술을 활용한 스마트 케어 시스템에 대한 연구)

  • Kim, HyeJeong;Kang, MinGu;Lee, HyeGyu;Ko, Dongbeom;Kim, JeongJoon;Park, Jeongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.243-250
    • /
    • 2018
  • This paper designs and implements a smart care system for the senior citizen who lives alone. Recently, as the level of living has increased due to the rapid improvement of medicine, living standard and environment, the proportion of the elderly population is increasing. In addition, the proportion of the elderly living alone, which is increasing with the aging society, suggests that the provision of services such as the elder care system and emergency notification is becoming an important issue. However, since the existing emergency notification technology analyzes fixed CCTV images, it is difficult to monitor in the blind spot of CCTV and to move to a place where the camera is not installed. There is a problem that it can not be performed. Therefore, in this paper, we design and develop a smart care system that utilizes robot and object tracking technology that can move in real time to overcome these shortcomings. This enables real-time monitoring regardless of the location, and prompts for assistance in case of an emergency, so that it can provide convenience to cares and assistants.

Development of a Vision Based Fall Detection System For Healthcare (헬스케어를 위한 영상기반 기절동작 인식시스템 개발)

  • So, In-Mi;Kang, Sun-Kyung;Kim, Young-Un;Lee, Chi-Geun;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.279-287
    • /
    • 2006
  • This paper proposes a method to detect fall action by using stereo images to recognize emergency situation. It uses 3D information to extract the visual information for learning and testing. It uses HMM(Hidden Markov Model) as a recognition algorithm. The proposed system extracts background images from two camera images. It extracts a moving object from input video sequence by using the difference between input image and background image. After that, it finds the bounding rectangle of the moving object and extracts 3D information by using calibration data of the two cameras. We experimented to the recognition rate of fall action with the variation of rectangle width and height and that of 3D location of the rectangle center point. Experimental results show that the variation of 3D location of the center point achieves the higher recognition rate than the variation of width and height.

  • PDF

Dynamic Bayesian Network Modeling and Reasoning Based on Ontology for Occluded Object Recognition of Service Robot (서비스 로봇의 가려진 물체 인식을 위한 온톨로지 기반 동적 베이지안 네트워크 모델링 및 추론)

  • Song, Youn-Suk;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.2
    • /
    • pp.100-109
    • /
    • 2007
  • Object recognition of service robots is very important for most of services such as delivery, and errand. Conventional methods are based on the geometric models in static industrial environments, but they have limitations in indoor environments where the condition is changable and the movement of service robots occur because the interesting object can be occluded or small in the image according to their location. For solving these uncertain situations, in this paper, we propose the method that exploits observed objects as context information for predicting interesting one. For this, we propose the method for modeling domain knowledge in probabilistic frame by adopting Bayesian networks and ontology together, and creating knowledge model dynamically to extend reasoning models. We verify the performance of our method through the experiments and show the merit of inductive reasoning in the probabilistic model

Extraction of Workers and Heavy Equipment and Muliti-Object Tracking using Surveillance System in Construction Sites (건설 현장 CCTV 영상을 이용한 작업자와 중장비 추출 및 다중 객체 추적)

  • Cho, Young-Woon;Kang, Kyung-Su;Son, Bo-Sik;Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.397-408
    • /
    • 2021
  • The construction industry has the highest occupational accidents/injuries and has experienced the most fatalities among entire industries. Korean government installed surveillance camera systems at construction sites to reduce occupational accident rates. Construction safety managers are monitoring potential hazards at the sites through surveillance system; however, the human capability of monitoring surveillance system with their own eyes has critical issues. A long-time monitoring surveillance system causes high physical fatigue and has limitations in grasping all accidents in real-time. Therefore, this study aims to build a deep learning-based safety monitoring system that can obtain information on the recognition, location, identification of workers and heavy equipment in the construction sites by applying multiple object tracking with instance segmentation. To evaluate the system's performance, we utilized the Microsoft common objects in context and the multiple object tracking challenge metrics. These results prove that it is optimal for efficiently automating monitoring surveillance system task at construction sites.

Updated Object Extraction in Underground Facility based on Centroid (중심점 기반 지하시설물 갱신객체 추출 기술)

  • Kim, Kwagnsoo;Lee, Kang Woo;Kim, Bong Wan;Jang, In Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.553-559
    • /
    • 2020
  • In order to prevent subsidence in urban areas, which is a major cause of damage to aging underground facilities, an integrated underground space map is being produced for systematic management of underground facilities. However, there is a problem of delaying the update time because an unupdated underground facility object is included in the process of updating the underground space integrated map. In this paper, we proposed a method to shorten the update time of the integrated map by selecting only the updated objects required for the update process of the underground space integrated map based on the central point of the underground facilities. Through the comparison of the centroid, the number of search targets is greatly reduced to shorten the search speed, and the distance of the actual location values between the two objects is calculated whether or not the objects are the same. The proposed method shows faster performance as the number of data increases, and the updated object can be reflected in the underground space integrated map about four times faster than the existing method.

Content-Based Image Retrieval Algorithm Using HAQ Algorithm and Moment-Based Feature (HAQ 알고리즘과 Moment 기반 특징을 이용한 내용 기반 영상 검색 알고리즘)

  • 김대일;강대성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.113-120
    • /
    • 2004
  • In this paper, we propose an efficient feature extraction and image retrieval algorithm for content-based retrieval method. First, we extract the object using Gaussian edge detector for input image which is key frames of MPEG video and extract the object features that are location feature, distributed dimension feature and invariant moments feature. Next, we extract the characteristic color feature using the proposed HAQ(Histogram Analysis md Quantization) algorithm. Finally, we implement an retrieval of four features in sequence with the proposed matching method for query image which is a shot frame except the key frames of MPEG video. The purpose of this paper is to propose the novel content-based image retrieval algerian which retrieves the key frame in the shot boundary of MPEG video belonging to the scene requested by user. The experimental results show an efficient retrieval for 836 sample images in 10 music videos using the proposed algorithm.

An Origin-Centric Communication Scheme to Support Sink Mobility for Continuous Object Detection in IWSNs (산업용 무선 센서망을 이용한 연속개체 탐지에서 이동 싱크 지원을 위한 발원점 중심의 통신방안)

  • Kim, Myung-Eun;Kim, Cheonyong;Yim, Yongbin;Kim, Sang-Ha;Son, Young-Sung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.12
    • /
    • pp.301-312
    • /
    • 2018
  • In industrial wireless sensor networks, the continuous object detection such as fire or toxic gas detection is one of major applications. A continuous object occurs at a specific point and then diffuses over a wide area. Therefore, many studies have focused on accurately detecting a continuous object and delivering data to a static sink with an energy-efficient way. Recently, some applications such as fire suppression require mobile sinks to provide real-time response. However, the sink mobility support in continuous object detection brings challenging issues. The existing approaches supporting sink mobility are designed for individual object detection, so they establish one-to-one communication between a source and a mobile sink for location update. But these approaches are not appropriate for a continuous object detection since a mobile sink should establish one-to-many communication with all sources. The one-to-many communication increases energy consumption and thus shortens the network lifetime. In this paper, we propose the origin-centric communication scheme to support sink mobility in a continuous object detection. Simulation results verify that the proposed scheme surpasses all the other work in terms of energy consumption.