• 제목/요약/키워드: and interdisciplinary learning

검색결과 235건 처리시간 0.024초

An intelligent method for pregnancy diagnosis in breeding sows according to ultrasonography algorithms

  • Jung-woo Chae;Yo-han Choi;Jeong-nam Lee;Hyun-ju Park;Yong-dae Jeong;Eun-seok Cho;Young-sin, Kim;Tae-kyeong Kim;Soo-jin Sa;Hyun-chong Cho
    • Journal of Animal Science and Technology
    • /
    • 제65권2호
    • /
    • pp.365-376
    • /
    • 2023
  • Pig breeding management directly contributes to the profitability of pig farms, and pregnancy diagnosis is an important factor in breeding management. Therefore, the need to diagnose pregnancy in sows is emphasized, and various studies have been conducted in this area. We propose a computer-aided diagnosis system to assist livestock farmers to diagnose sow pregnancy through ultrasound. Methods for diagnosing pregnancy in sows through ultrasound include the Doppler method, which measures the heart rate and pulse status, and the echo method, which diagnoses by amplitude depth technique. We propose a method that uses deep learning algorithms on ultrasonography, which is part of the echo method. As deep learning-based classification algorithms, Inception-v4, Xception, and EfficientNetV2 were used and compared to find the optimal algorithm for pregnancy diagnosis in sows. Gaussian and speckle noises were added to the ultrasound images according to the characteristics of the ultrasonography, which is easily affected by noise from the surrounding environments. Both the original and noise added ultrasound images of sows were tested together to determine the suitability of the proposed method on farms. The pregnancy diagnosis performance on the original ultrasound images achieved 0.99 in accuracy in the highest case and on the ultrasound images with noises, the performance achieved 0.98 in accuracy. The diagnosis performance achieved 0.96 in accuracy even when the intensity of noise was strong, proving its robustness against noise.

스마트폰 기반 영어 어휘 상황학습 에이전트 개발 (Development of a English Vocabulary Context-Learning Agent based on Smartphone)

  • 김진일
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.344-351
    • /
    • 2016
  • Recently, mobile application for english vocabulary learning is being developed actively. However, most mobile English vocabulary learning applications did not effectively connected with the technical advantages of mobile learning. Also,the study of mobile english vocabulary learning app are still insufficient. Therefore, this paper development a english vocabulary context-learning Agent that can practice context learning more reasonably using a location-based service, a character recognition technology and augmented reality technology based on smart phones. In order to evaluate the performance of the proposed agent, we have measured the precision and usability. As results of experiments, the precision of learning vocabulary is 89% and 'Match between system and the real world', 'User control and freedom', 'Recognition rather than recall', 'Aesthetic and minimalist design' appeared to be respectively 3.91, 3.80, 3.85, 4.01 in evaluation of usability. It were obtained significant results.

Differentiation of Aphasic Patients from the Normal Control Via a Computational Analysis of Korean Utterances

  • Kim, HyangHee;Choi, Ji-Myoung;Kim, Hansaem;Baek, Ginju;Kim, Bo Seon;Seo, Sang Kyu
    • International Journal of Contents
    • /
    • 제15권1호
    • /
    • pp.39-51
    • /
    • 2019
  • Spontaneous speech provides rich information defining the linguistic characteristics of individuals. As such, computational analysis of speech would enhance the efficiency involved in evaluating patients' speech. This study aims to provide a method to differentiate the persons with and without aphasia based on language usage. Ten aphasic patients and their counterpart normal controls participated, and they were all tasked to describe a set of given words. Their utterances were linguistically processed and compared to each other. Computational analyses from PCA (Principle Component Analysis) to machine learning were conducted to select the relevant linguistic features, and consequently to classify the two groups based on the features selected. It was found that functional words, not content words, were the main differentiator of the two groups. The most viable discriminators were demonstratives, function words, sentence final endings, and postpositions. The machine learning classification model was found to be quite accurate (90%), and to impressively be stable. This study is noteworthy as it is the first attempt that uses computational analysis to characterize the word usage patterns in Korean aphasic patients, thereby discriminating from the normal group.

A Methodology of Automated Analysis and Qualitative Assessment of Legislation and Court Decisions

  • Trofimov, Egor;Metsker, Oleg;Kopanitsa, Georgy
    • International Journal of Computer Science & Network Security
    • /
    • 제22권11호
    • /
    • pp.229-235
    • /
    • 2022
  • This study aims to substantiate an interdisciplinary methodology for automated analysis and qualitative assessment of legislation and court decisions. The development of this kind of methodology will make it possible to fill a number of methodological gaps in various research areas, including law effectiveness assessment and legal monitoring. We have defined a methodology based on the interdisciplinary principles and tools. In general, it should be noted that even at the level of qualitative assessment made with the use of the methodology described above, the accumulation of knowledge about the relationship between legal objectives, indicators and computer methods of their identification can reduce the role of expert knowledge and subjective factor in the process of assessment, planning, forecasting and control over the state of legislation and law enforcement. Automation of intellectual processes becomes inevitable in a digital society, but, releasing experts from routine work, simultaneously reorients it to development of interdisciplinary methods and control over their application.

Prediction of Quantitative Traits Using Common Genetic Variants: Application to Body Mass Index

  • Bae, Sunghwan;Choi, Sungkyoung;Kim, Sung Min;Park, Taesung
    • Genomics & Informatics
    • /
    • 제14권4호
    • /
    • pp.149-159
    • /
    • 2016
  • With the success of the genome-wide association studies (GWASs), many candidate loci for complex human diseases have been reported in the GWAS catalog. Recently, many disease prediction models based on penalized regression or statistical learning methods were proposed using candidate causal variants from significant single-nucleotide polymorphisms of GWASs. However, there have been only a few systematic studies comparing existing methods. In this study, we first constructed risk prediction models, such as stepwise linear regression (SLR), least absolute shrinkage and selection operator (LASSO), and Elastic-Net (EN), using a GWAS chip and GWAS catalog. We then compared the prediction accuracy by calculating the mean square error (MSE) value on data from the Korea Association Resource (KARE) with body mass index. Our results show that SLR provides a smaller MSE value than the other methods, while the numbers of selected variables in each model were similar.

캡스톤 디자인 수업에서 학생들의 주제 결정 패턴 탐색 (Exploring Topic Defining Patterns of Students in Interdisciplinary Capstone Design Class)

  • 변문경
    • 공학교육연구
    • /
    • 제21권1호
    • /
    • pp.14-26
    • /
    • 2018
  • The goal of this study was to explore topic defining patterns of students in interdisciplinary Capstone Design Class. Thematic analysis methodology was used to examine 85 Korean college students' lived experience of project topic generation which is for interdisciplinary capstone design class and Individual open-ended survey for constituted the data sources. Findings show four contexts of student's topic defining patterns using thematic analysis including (a) one leader's directed problem representation, (b) team common decision making after brainstorming, (c) empathy with professor proposed issue, (d) problems offered to students by corporate or research competitions. Based on research result, I could suggest instructional strategies of Capstone Design Class of teacher for helping their students' topic defining. It was necessary to minimize the opinions of the instructors at the beginning of class and minimize the number of team members. And also it provided a lot of opportunities to collaborate with companies in the topic selection process, it will help to develop the students' ability to determine the valuable topic in project.

Real-Time Cattle Action Recognition for Estrus Detection

  • Heo, Eui-Ju;Ahn, Sung-Jin;Choi, Kang-Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2148-2161
    • /
    • 2019
  • In this paper, we present a real-time cattle action recognition algorithm to detect the estrus phase of cattle from a live video stream. In order to classify cattle movement, specifically, to detect the mounting action, the most observable sign of the estrus phase, a simple yet effective feature description exploiting motion history images (MHI) is designed. By learning the proposed features using the support vector machine framework, various representative cattle actions, such as mounting, walking, tail wagging, and foot stamping, can be recognized robustly in complex scenes. Thanks to low complexity of the proposed action recognition algorithm, multiple cattle in three enclosures can be monitored simultaneously using a single fisheye camera. Through extensive experiments with real video streams, we confirmed that the proposed algorithm outperforms a conventional human action recognition algorithm by 18% in terms of recognition accuracy even with much smaller dimensional feature description.

I-QANet: 그래프 컨볼루션 네트워크를 활용한 향상된 기계독해 (I-QANet: Improved Machine Reading Comprehension using Graph Convolutional Networks)

  • 김정훈;김준영;박준;박성욱;정세훈;심춘보
    • 한국멀티미디어학회논문지
    • /
    • 제25권11호
    • /
    • pp.1643-1652
    • /
    • 2022
  • Most of the existing machine reading research has used Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) algorithms as networks. Among them, RNN was slow in training, and Question Answering Network (QANet) was announced to improve training speed. QANet is a model composed of CNN and self-attention. CNN extracts semantic and syntactic information well from the local corpus, but there is a limit to extracting the corresponding information from the global corpus. Graph Convolutional Networks (GCN) extracts semantic and syntactic information relatively well from the global corpus. In this paper, to take advantage of this strength of GCN, we propose I-QANet, which changed the CNN of QANet to GCN. The proposed model performed 1.2 times faster than the baseline in the Stanford Question Answering Dataset (SQuAD) dataset and showed 0.2% higher performance in Exact Match (EM) and 0.7% higher in F1. Furthermore, in the Korean Question Answering Dataset (KorQuAD) dataset consisting only of Korean, the learning time was 1.1 times faster than the baseline, and the EM and F1 performance were also 0.9% and 0.7% higher, respectively.

THAMS Clinic Camp 운영을 통한 융합인재 양성 방안 연구 (A Study to Train Student with Interdisciplinary Abilities through THAMS Clinic Camp)

  • 전영선;서태원
    • 공학교육연구
    • /
    • 제18권6호
    • /
    • pp.80-87
    • /
    • 2015
  • The aim of this study suggest the THAMS Clinic Camp program to train the interdisciplinary students with humanistic knowledge as well as the skills to perform the scientific and engineering works. Since the future of society is required students with the ability to elicit an emotional empathy, THAMS Clinic Camp program has been planed and performed from year 2012 based on the comprehensive liberal learning. The average employment rate over the past three years of the students who participated in THAMS Clinic Camp program showed 7% better than the overall average employment rate of Andong National University. The another visible educational outcomes of the THAMS Clinic Camp program are following; i) To take place the conversion of recognition for the interdisciplinary activity by breaking down the walls between fragmented disciplines to students and ii) To provide the opportunity that students will understand the past and refocus the current to have the idea to plan for the future in the right direction.

인간 질병에서 DNA 메틸화 지역의 고차상호작용 탐색을 위한 진화적 연관관계 학습 (Evolutionary association learning for detecting higher-order interactions of DNA methylation regions in human diseases)

  • 이제근;김수진;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.420-422
    • /
    • 2012
  • DNA 메틸화는 후성유전학의 한 유형으로 유전자 발현을 조절하여 질병을 비롯한 다양한 생물학적 프로세스에 영향을 준다고 알려져 있다. 따라서 DNA 메틸화 정도와 인간 질병과의 연관성에 관한 연구는 질병의 원인 및 기전을 밝히고 메틸화 프로세스 조절을 통한 질병 치료 방법 개발을 위한 기반이 될 수 있다. 유전자 발현 조절 및 질병 발생은 많은 인자들의 복합적인 상호작용에 영향을 받으므로, 여러 위치에서의 메틸화 정도들의 고차원 조합을 이용한 질병과의 연관 관계 분석이 필수적이다. 본 연구에서는 진화 연산과 가중치 학습에 기반하여 유방암 발생과 연관되어 있는 메틸화 위치의 고차 상호작용을 탐색할 수 있는 방법을 제안한다.