• Title/Summary/Keyword: and fibers

Search Result 5,635, Processing Time 0.028 seconds

Flexural behavior of RC beams made with basalt and polypropylene fibers: Experimental and numerical study

  • Murad, Yasmin Z.;Abdel-Jabar, Haneen
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.165-173
    • /
    • 2022
  • The effect of basalt and polypropylene fibers on the flexural behavior of reinforced concrete (RC) beams is investigated in this paper. The compressive and tensile behaviors of the basalt concrete and polypropylene concrete cylinders are also investigated. Eight beams and 28 cylinders were made with different percentages of basalt and polypropylene fibers. The dosages of fiber were selected as 0.6%, 1.3%, and 2.5% of the total cement weight. Each type of fiber was mixed solely with the concrete mix. Basalt and polypropylene fibers are modern and cheap materials that can be used to improve the structural behavior of RC members. This research is designed to find the optimum percentage of basalt and polypropylene fibers for enhancing the flexural behavior of RC beams. Test results showed that the addition of basalt and polypropylene fibers in any dosage (0.6%, 1.3%, and 2.5%) can increase the flexural strength and displacement ductility index of the beams where the maximum enhancement was measured with 1.3% fibers. The maximum increments in the flexural strength and the displacement ductility index were 30.39% and 260% for the basalt fiber case, while the maximum improvement for the polypropylene fibers case was 55.5% and 230% compared to the control specimen. Finite element (FE) models were then developed in ABAQUS to predict the numerical behaviour of the tested beams. The FE models were able to predict the experimental behaviour with reasonable accuracy. This research confirms the efficiency of basalt and polypropylene fibers in enhancing the flexural behavior of RC beams, and it also suggests the optimum dosage of fibers.

Stabilization of pitch-based carbon fibers accompanying electron beam irradiation and their mechanical properties

  • Park, Mi-Seon;Ko, Yoonyoung;Jung, Min-Jung;Lee, Young-Seak
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.121-126
    • /
    • 2015
  • Carbon fibers are prepared by stabilizing pitch fibers accompanying electron beam (E-beam) irradiation. The carbon fibers pretreated by E-beam irradiation achieve a higher stabilization index than the carbon fibers that are only heat-stabilized. In addition, the carbon fibers subjected to E-beam irradiation in the stabilization step exhibit a comparable tensile strength to that of general purpose carbon fibers. The carbon fibers pretreated with an absorbed dose of 3000 kGy have a tensile strength of 0.54 GPa for a similar fiber diameter. Elemental, Fourier-transform infrared spectroscopy, and thermogravimetric analyses indicate that E-beam irradiation is an efficient oxidation and dehydrogenation treatment for pitch fibers by showing that the intensity of the aliphatic C-H stretching and aromatic $CH_2$ bending (out-of-plane) bands significantly decrease and carbonyl and carboxylic groups form.

Mechanical Properties and Oxidation Behaviors of Boron Oxide Implanted Carbon Fibers

  • Noh, Baek-Nam;Kim, Jung-Il;JooN, Hyeok-Jong
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.64-68
    • /
    • 2000
  • This paper describes the mechanical properties and oxidation resistance of carbon fibers with and without additions of boron oxide additives, and describes the changes in the properties resulting from increased heat treatment temperature (HTT) of the fibers. Carbon fibers in this experiment were heat treated up to $2800^{\circ}C$ each with and without boron oxide treated on the surface of fibers. In the case of boron oxide added carbon fibers, they do not show the improvement of tensile strength and modulus compared to those of no treated carbon fibers below $2200^{\circ}C$ since they are doped substitutionally with boron above $2600^{\circ}C$, which accelerate the graphitization of carbon fibers. Boron oxide implanted carbon fibers showed high resistance to oxidation, however, when carbon fibers were heat treated below $2200^{\circ}C$, they showed almost the same trend of air oxidation.

  • PDF

Effects of In Vitro Degradation on the Weight Loss and Tensile Properties of PLA/LPCL/HPCL Blend Fibers

  • Yoon Cheol Soo;Ji Dong Sun
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 2005
  • PLA/LPCL/HPCL blend fibers composed of poly (lactic acid) (PLA), low molecular weight poly ($\varepsilon$-caprolactone) (LPCL), and high molecular weight poly ($\varepsilon$-caprolactone) (HPCL) were prepared by melt blending and spinning for bioab­sorbable filament sutures. The effects of blending time and blend composition on the X-ray diffraction patterns and tensile properties of PLA/LPCL/HPCL blend fibers were characterized by WAXD and UTM. In addition, the effect of in vitro degra­dation on the weight loss and tensile properties of the blend fibers hydrolyzed during immersion in a phosphate buffer solu­tion at pH 7.4 and 37$^{\circ}C$ for 1-8 weeks was investigated. The peak intensities of PLA/LPCL/HPCL blend fibers in X-ray diffraction patterns decreased with an increase of blending time and LPCL contents in the blend fibers. The weight loss of PLA/LPCL/HPCL blend fibers increased with an increase of blending time, LPCL contents, and hydrolysis time while the tensile strength and modulus of the blend fibers decreased. The tensile strength and modulus of the blend fibers were also found to be increased with an increase of HPCL contents in the blend fibers. The optimum conditions to prepare PLA/LPCL/HPCL blend fibers for bioabsorbable sutures are LPCL contents of $5 wt\%, HPCL contents of $35 wt\%, and blending time of 30 min. The strength retention of the PLA/LPCL/HPCL blend fiber prepared under optimum conditions was about $93.5\% even at hydrolysis time of 2 weeks.

Reaarding Effect of Dietary Fibers Isolated from Tangerine Peels on Glucose, Bile Acid, Cadmium transport In Vitro (감귤과피로부터 분리한 식이섬유의 포도당, 담즙산, 카드뮴 투과억제에 관한 In Vitro 연구)

  • 김미경
    • Journal of Nutrition and Health
    • /
    • v.30 no.2
    • /
    • pp.210-219
    • /
    • 1997
  • Retarding effects of the dietary fibers from tangerine peels on glucose, bile acid and cadmium transport were evaluated by dialysis method, and were compared with those of commercial dietary fibers(citrus pection, CM-cellulose, guar gum, $\alpha$-cellulose). Yields of total (TDF), insoluble(IDF) and soluble dietary fibers(SDF) from tangerine peels on the fresh matter basis were 2.84%, 1.95% and 0.39% respectively. The amount of insoluble fibers was 5.2 times higher than that of soluble fibers. Soluble fibers(guar gum, CM-cellulose, SDF, pectin) had the retarding effect on glucose transport, while IDF, TDF and $\alpha$-cellulose did not have. Guar gum showed the greatest effect, followed by CM-cellulose, SDF and pectin. Among the extracted fibers, only SDF had the effect on glucose transport retardation. Regarding bile acid dialysis, guar gum had the greatest retarding effect, and all dietary fibers from tangerine peels, especially SDF, showed the effect of bile acid retardation. On cadmium transport retardation, CM-cellulose had the greatest effect, followed by SDF, TDF, IDF, guar gum and pectin. Among the extracted fibers, SDF had the greatest effect on Cd trasport transport retardation. The extracted dietary fibers showed higher retarding effect on Cd transport than glucose and bile acid transport, and the effect of SDF was higher than IDF.

  • PDF

Characterization of Activation of Various Carbon Fibers via Chemical Activation with KOH (KOH에 의한 활성화된 탄소섬유들의 활성화특성)

  • Lim, Yun-Soo;Moon, Sook-Young;Han, Dong-Yun;Lee, Byung-Ha
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • OXI-PAN fibers, Kynol fibers and rayon fibers were used as precursorsfor the preparation of activated carbon fibers (ACFs) by chemical activation with KOH at $800^{\circ}C$. The effects of different precursorfibers and fiber/KOH ratios on the final ACFs are discussed. The precursor fibers used are appropriate for the ACFs in a single stage pyrolysis process. The OXI-PAN fibers which were activated with KOH of 2.0M showed a specific surface area of $2328m^2/g$ however, loosed the fiber shape because of low yields. The Kynol fibers and Rayon fibers showed the high yields but the lower specific surface area of $900m^2/g$ and $774m^2/g$, respectively, at KOH of 1.5M. The OXI-PAN fibers which were activated with KOH of 1.5M have a specific surface area of $1028m^2/g$ and higher micro-pore volumes and lower yields rather than Kynol-1.5 and Rayon-1.5 samples. This phenomenon is because of higher chemical resistance of the Kynol and Rayon fibers rather than OXI-PAN fibers. However, the Kynol fibers were the best precursors on KOH activation at $800^{\circ}C$ considered carbon yields, surface areas and micropore volumes.

Experimental investigation of the pullout behavior of fiber concrete with inclination steel fibers

  • Seyyed Amir Hossein, Madani;S. Mohammad, Mirhosseini;Ehsanolah, Zeighami;Alireza, NezamAbadi
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.299-307
    • /
    • 2022
  • Cement-based matrixes have low tensile strength and negligible ductility. Adding fibres to these matrixes will improve their mechanical properties and make these composites suitable for structural applications. Post-cracking tensile strength of steel fibers-reinforced cementitious composite materials is directly related to the number of transverse fibers passing through the crack width and the pulling-out behavior of each of the fibers. Therefore, the exact recognition of the pullout behavior of single fibers is necessary to understand the uniaxial tensile and bending behavior of steel fiber-reinforced concrete. In this paper, an experimental study has been carried out on the pullout behavior of 3D (steel fibers with totally two hooks at both ends), 4D (steel fibers with a total of four hooks at both ends), and 5D (steel fibers with totally six hooks at both ends) in which the fibers have been located either perpendicular to the crack width or in an inclined manner. The pullout behavior of the mentioned steel fibers at an inclination angle of 0, 15, 30, 45, and 60 degrees and with embedded lengths of 10, 15, 20, 25, and 30 millimetres is studied in order to explore the simultaneous effect of the inclination angle of the fibers relative to the alongside loading and the embedded length of fibers on the pullout response in each case, including the maximal pullout force, the slip of the maximum point of pullout force, pullout energy, fiber rupture, and concrete matrix spalling. The results showed that the maximum pullout energy in 3D, 4D, and 5D steel fibers with different embedded lengths occurs at 0 to 30° inclination angles. In 5D fibers, maximum pullout energy occurs at a 30° angle with a 25 mm embedded length.

Classification of the Length of Ceramic Fibers by Settling Process (중력침강에 의한 세라믹 섬유의 길이분류)

  • 김제균;최광훈;오승진;정윤중;강대갑;이재춘
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.161-170
    • /
    • 1994
  • For the preparation of short ceramic fibers of which average length might be in accordance with the opening size of sieve, e.g., 150${\mu}{\textrm}{m}$ or 300${\mu}{\textrm}{m}$, bulk fibers were grounded on sieve screen by applying both compressing and shearing force, and passed through the sieve screen. The grounded fibers were subjected to gravitational settling processes. The classified fibers were observed by scanning electron microscopy and the length of each fiber was measured to correlate the average length with the opening size of the sieve used for grinding bulk fibers. Theoretical analysis show that a free settling technique is ineffective for the classification of fibers by length compared with that of particles. The average lengths of classified fibers estimated by scanning electron microscopy were in good agreement with those obtained by relative packing volume of the fibers. Accordingly, it is confirmed that average fiber lengths can be determined from bulk volume data without photographing, counting and averaging results for hundreds of fibers.

  • PDF

Surface Morphologies and Internal Fine Structures of Bast Fibers

  • Wang H. M.;Wang X.
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.6-12
    • /
    • 2005
  • Fiber surface morphologies and associated internal structures are closely related to its properties. Unlike other fibers including cotton, bast fibers possess transverse nodes and fissures in cross-sectional and longitudinal directions. Their morphologies and associated internal structures were anatomically examined under the scanning electron microscope. The results showed that the morphologies of the nodes and the fissures of bast fibers varied depending on the construction of the inner fibril cellular layers. The transverse nodes and fissures were formed by the folding and spiralling of the cellular layers during plant growth. The dimensions of nodes and fissures were determined by the dislocations of the cellular layers. There were also many longitudinal fissures in bast fibers. Some deep longitudinal fissures even opened the fiber lumen for a short way along the fiber. In addition, the lumen channel of the bast fibers could be disturbed or disrupted by the nodes and the spi­rals of the internal cellular layers. The existence of the transverse nodes and fissures in the bast fibers could degrade the fiber mechanical properties, whereas the longitudinal fissures may contribute to the very rapid moisture absorption and desorption.

Characterization and Fabrication of Chemically Activated Carbon Fibers with Various Drying Temperatures using OXI-PAN Fibers

  • Moon, Sook-Young;Lee, Byung-Ha;Lim, Yun-Soo
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.30-36
    • /
    • 2007
  • Oxidized PAN (OXI-PAN) fibers were used for the precursors of activated carbon fiber in study. How drying temperature affected the properties of carbon fibers on activating process of carbon fibers was investigated. The specific surface areas of activated carbon fibers have been determined on a series of chemically activated carbons with KOH and NaOH. The experimental data showed variations in specific surface area, iodine and silver adsorptions by the activated carbon fibers. The amount of iodine adsorption increases with increasing specific surface areas in both activation methods. This was because the ionic radius of iodine was smaller than the interior micropore size of activated carbon fibers. Silver adsorbed well in NaOH activated carbon fibers rather than KOH activated carbon fibers in this study.