DOI QR코드

DOI QR Code

Experimental investigation of the pullout behavior of fiber concrete with inclination steel fibers

  • Seyyed Amir Hossein, Madani (Department of Civil Engineering, Arak Branch, Islamic Azad University) ;
  • S. Mohammad, Mirhosseini (Department of Civil Engineering, Arak Branch, Islamic Azad University) ;
  • Ehsanolah, Zeighami (Department of Civil Engineering, Arak Branch, Islamic Azad University) ;
  • Alireza, NezamAbadi (Department of Mechanical Engineering, Arak Branch, Islamic Azad University)
  • Received : 2020.01.30
  • Accepted : 2022.11.18
  • Published : 2022.11.25

Abstract

Cement-based matrixes have low tensile strength and negligible ductility. Adding fibres to these matrixes will improve their mechanical properties and make these composites suitable for structural applications. Post-cracking tensile strength of steel fibers-reinforced cementitious composite materials is directly related to the number of transverse fibers passing through the crack width and the pulling-out behavior of each of the fibers. Therefore, the exact recognition of the pullout behavior of single fibers is necessary to understand the uniaxial tensile and bending behavior of steel fiber-reinforced concrete. In this paper, an experimental study has been carried out on the pullout behavior of 3D (steel fibers with totally two hooks at both ends), 4D (steel fibers with a total of four hooks at both ends), and 5D (steel fibers with totally six hooks at both ends) in which the fibers have been located either perpendicular to the crack width or in an inclined manner. The pullout behavior of the mentioned steel fibers at an inclination angle of 0, 15, 30, 45, and 60 degrees and with embedded lengths of 10, 15, 20, 25, and 30 millimetres is studied in order to explore the simultaneous effect of the inclination angle of the fibers relative to the alongside loading and the embedded length of fibers on the pullout response in each case, including the maximal pullout force, the slip of the maximum point of pullout force, pullout energy, fiber rupture, and concrete matrix spalling. The results showed that the maximum pullout energy in 3D, 4D, and 5D steel fibers with different embedded lengths occurs at 0 to 30° inclination angles. In 5D fibers, maximum pullout energy occurs at a 30° angle with a 25 mm embedded length.

Keywords

References

  1. Abdallah, S., Fan, M., Zhou, X. and Le Geyt, S. (2016a), "Anchorage Effects of Various Steel Fibre Architectures for Concrete Reinforcement", Int. J. Concrete Struct. Mater., 10(3), 325-335. https://doi.org/10.1007/s40069-016-0148-5
  2. Abdallah, S., Fan, M. and Zhou, X. (2016b), "Effect of hooked-end steel fibres geometry on pull-out behaviour of ultra-high performance concrete", Word Acad. Sci. Eng. Technol., 10(12), 1530-1535.
  3. Abdallah, S., Fan, M. and Cashell, K.A. (2017), "Pullout behaviour of straight and hooked-end steel fibres under elevated temperatures", Cement Concrete Res., 95, 132-140. http://dx.doi.org/10.1016/j.cemconres.2017.02.010
  4. Alaei, F. and Ghods, N. (2009), "Modeling the pulling-out behavior of curved steel fibers embedded in cementitious base matrix with high resistant", Ph.D. Thesis; Shahrood University of Technology, Iran.
  5. Alaei, F. and Soleimani, A. (2009), "Final report of the research project: Designing and constructing a pullout fibers of matrix device", Shahrood University of Technology, Ph.D. Thesis; Shahrood University of Technology, Iran.
  6. Alwan, J., Naaman, A.E. and Guerrero, P. (1999), "Effect of mechanical clamping on the pullout response of hooked steel fibers embedded in cementitious matrices", Concrete Sci. Eng., 1(1), 15-25.
  7. Banthia, N. and Trottier, J.-F. (1994), "Concrete reinforced with deformed steel fibers, part I: bond-slip mechanisms", ACI Mater. J., 91(5), 435-445.
  8. Fang, Q. and Zhang, J. (2013), "Three-dimensional modelling of steel fiber reinforced concrete material under intense dynamic loading", Constr. Build. Mater., 44, 118-132. http://dx.doi.org/10.1016/j.conbuildmat.2013.02.067
  9. Fantilli, A. and Vallini, P. (2007), "A cohesive interface model for the pullout of inclined steel fibers in cementitious matrixes", J. Adv. Concrete Technol., 5(2), 247-258. https://doi.org/10.3151/jact.5.247
  10. Feng, H., Sheikh, M.N., Hadi, M.N., Feng, L., Gao, D. and Zhao, J (2019), "Pullout behaviour of different types of steel fibres embedded in magnesium phosphate cementitious matrix", Int. J. Concrete Struct. Mater., 13(1), 1-17. https://doi.org/10.1186/s40069-019-0344-1
  11. Georgiadi-Stefanidi, K., Mistakidis, E., Pantousa, D. and Zygomalas, M. (2010), "Numerical modelling of the pullout of hooked steel fibres from high-strength cementitious matrix, supplemented by experimental results", Constr. Build. Mater., 24, 2489-2506. https://doi.org/10.1016/j.conbuildmat.2010.06.007
  12. Georgiadi-Stefanidi, K., Panagouli, O. and Kapatsina, A. (2015), "Numerical modelling of the pull-out response of inclined hooked steel fibres", Adv. Concrete Constr., Int. J., 3(2), 127-143. http://dx.doi.org/10.12989/acc.2015.3.2.127
  13. Isla, F., Ruano, G. and Luccioni, B. (2015), "Analysis of steel fibers pullout. Experimental study", Constr. Build. Mater., 100, 183-193. https://doi.org/10.1016/j.conbuildmat.2015.09.034
  14. Laranjeira de Oliveira, F. (2010), "Design-oriented constitutive model for steel fiber reinforced concrete", Universitat Politecnica de Catalunya, Departament of Construction Engineering.
  15. Lawrence, P. (1972), "Some theoretical considerations offibre pullout from an elastic matrix", J. Mater. Sci., 7(1), 1-6. https://doi.org/10.1007/BF00549541
  16. Li, V.C., Wang, Y. and Backer, S. (1990), "Effect of inclining angle, bundling and surface treatment onsynthetic fibre pullout from a cement matrix", Composites, 21(2), 132-140. https://doi.org/10.1016/0010-4361(90)90005-H
  17. Mandel, J., Wei, S. and Said, S. (1987), "Studies of the properties of the fiber-matrix interface in steel fiber reinforced mortar", ACI Mater. J., 84(2), 101-109.
  18. Montero-Chacon, F., Cifuentes, H. and Medina, F. (2017), "Mesoscale characterization of fracture properties of steel fiber-reinforced concrete using a lattice-particle model", Materials, 10(2), p. 207. https://doi.org/10.3390/ma10020207
  19. Naaman, A.E. (2004), "Evaluation of steel fibers forapplications in structural concrete", Proceedings of the 6th International RILEM Symposium on Fibre Reinforced Concretes, pp. 389-400.
  20. Naaman, A.E. and Reinhardt, H.W. (1996), "High performance fiber reinforced cement composites 2", Proceedings of the International Workshop.
  21. Naaman, A.E., Namur, G.G., Alwan, J.M. and Najm, H.S. (1991), "Fiber pullout and bond slip. I: Analytical study", J. Struct. Eng., 117, 2769-2800. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:9(2769)
  22. Ouyang, C., Pacios, A. and Shah, S. (1994), "Pullout of Inclined Fibers from Cementitious Matrix", J. Eng. Mech., 120(12), 2641-2659. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:12(2641)
  23. Rahmani, T., Kiani, B., Bakhshi, M. and Shekarchizadeh, M. (2012a), "Application of different fibers to reduce plastic shrinkage cracking of concrete", Proceedings of the 7th RILEM International Conference on Cracking in Pavements, pp. 635-642. https://doi.org/10.1007/978-94-007-4566-7_62
  24. Rahmani, T., Kiani, B., Shekarchi, M. and Safari, A. (2012b), "Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test", Constr. Build. Mater., 37, 360-369. https://doi.org/10.1016/j.conbuildmat.2012.07.068
  25. Robins, P., Austin, S. and Jones, P. (2002), "Pull-out behaviour of hooked steel fibres", Mater. Struct., 35(7), 434-442. https://doi.org/10.1007/BF02483148
  26. Tang, C. (2018), "Local bond-slip behavior of medium and high strength fiber reinforced concrete after exposure to high temperatures", Struct. Eng. Mech., Int. J., 66(4), 477-485. https://doi.org/10.12989/sem2018.66.477
  27. Yoo, D.Y., Park, J.J. and Kim, S.W. (2017), "Fiber pullout behavior of HPFRCC: Effects of matrix strength and fiber type", Compos. Struct., 174, 263-276. https://doi.org/10.1016/j.compstruct.2017.04.064
  28. Yoo, D., Kim, S., Kim, J. and Chun, B. (2019), "An experimental study on pullout and tensile behavior of ultra-high-performance concrete reinforced with various steel fibers", Constr. Build. Mater., 206, 46-61. https://doi.org/10.1016/j.conbuildmat.2019.02.058