• 제목/요약/키워드: and clustering

검색결과 5,643건 처리시간 0.029초

K-Means 알고리즘을 이용한 계층적 클러스터링에서 클러스터 계층 깊이와 초기값 선정 (Selection of Cluster Hierarchy Depth and Initial Centroids in Hierarchical Clustering using K-Means Algorithm)

  • 이신원;안동언;정성종
    • 정보관리학회지
    • /
    • 제21권4호
    • /
    • pp.173-185
    • /
    • 2004
  • 정보통신의 기술이 발달하면서 정보의 양이 많아지고 사용자의 질의에 대한 검색 결과 리스트도 많이 추출되므로 빠르고 고품질의 문서 클러스터링 알고리즘이 중요한 역할을 하고 있다. 많은 논문들이 계층적 클러스터링 방법을 이용하여 좋은 성능을 보이지만 시간이 많이 소요된다. 반면 K-means 알고리즘은 시간 복잡도를 줄일 수 있는 방법이다. 본 논문에서는 계층적 클러스터링 시스템인 콘도르(Condor) 시스템에서 간단하고 고품질이며 효율적으로 정보 검색 할 수 있도록 구현하였다. 이 시스템은 K-Means Algorithm을 이용하였으며 클러스터 계층 깊이와 초기값을 조절하여 $88\%$의 정확율을 보였다.

센서 네트워크에서의 동적 크기 다중홉 클러스터링 방법 (Dynamic-size Multi-hop Clustering Mechanism in Sensor Networks)

  • 임유진;안상현
    • 정보처리학회논문지C
    • /
    • 제12C권6호
    • /
    • pp.875-880
    • /
    • 2005
  • 제한된 자원을 가진 센서 노드들로 구성된 센서 네트워크에서 가장 중요한 이슈 중 하나는 쑤어진 에너지를 최대한 활용하여 네트워크 수명을 연장하는 것이다. 네트워크 수명을 연장하는 가장 대표적인 방법은 클러스터링 방법이다. 본 논문에서는 CH(Cluster Head) 및 후보 CH 노드들로부터 주어지는 통신 부하(load)와 잔여 에너지 양에 대한 정보를 기반으로 클러스터 크기를 동적으로 변화시켜 클러스터 내의 노드 밀도에 상관없이 각 CH에게 주어지는 부담을 일정하게 유지시키는 새로운 동적 크기 다중홉 클러스터링 방법을 제안한다. 시뮬레이션을 통해 제안된 방법이 기존의 단일홉 모드나 고정 크기 다중홉 모드 클러스터링 방법보다 우수함을 보였다.

클러스터의 히스토그램을 이용한 XML 문서의 점진적 클러스터링 기법 (An Incremental Clustering Technique of XML Documents using Cluster Histograms)

  • 황정희
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권3호
    • /
    • pp.261-269
    • /
    • 2007
  • 이 논문에서는 XML 문서에 대한 효율적인 검색과 통합을 위한 기초연구로써 XML 문서들에 대한 구조 중심의 클러스터링 기법을 제안한다. 기존 연구에서 문서간의 구조적 유사도를 기반으로 클러스터를 형성해 가는 것과는 다르게 많은 데이타를 빠르게 처리할 수 있는 트랜잭션 데이타를 취급하는 알고리즘을 변형하여 적용한다. 각 클러스터에 포함되어 있는 항목들에 대한 누적 분포를 나타내는 히스토그램을 이용하여 전체적인 클러스터링의 응집도를 고려하는 클러스터링을 수행한다. 기존 연구와의 실험을 통해 클러스터링 처리 시간의 향상과 양질의 클러스터를 생성하는 것을 알 수 있었다.

슈퍼픽셀 DBSCAN 군집 알고리즘을 이용한 용융아연도금 강판의 부식이미지 분석 (Corrosion image analysis on galvanized steel by using superpixel DBSCAN clustering algorithm)

  • 김범수;김연원;이경황;양정현
    • 한국표면공학회지
    • /
    • 제55권3호
    • /
    • pp.164-172
    • /
    • 2022
  • Hot-dip galvanized steel(GI) is widely used throughout the industry as a corrosion resistance material. Corrosion of steel is a common phenomenon that results in the gradual degradation under various environmental conditions. Corrosion monitoring is to track the degradation progress for a long time. Corrosion on steel plate appears as discoloration and any irregularities on the surface. This study developed a quantitative evaluation method of the rust formed on GI steel plate using a superpixel-based DBSCAN clustering method and k-means clustering from the corroded area in a given image. The superpixel-based DBSCAN clustering method decrease computational costs, reaching automatic segmentation. The image color of the rusty surface was analyzed quantitatively based on HSV(Hue, Saturation, Value) color space. In addition, two segmentation methods are compared for the particular spatial region using their histograms.

HSV색공간을 이용한 칼라화상의 클러스터링 및 색차평가에 관한 연구 (A Study on Clustering and Color Difference Evaluation of Color Image using HSV Color Space)

  • 김영일
    • 전자공학회논문지T
    • /
    • 제35T권2호
    • /
    • pp.20-27
    • /
    • 1998
  • HSV색공간을 이용한 칼라화상의 클러스터링 및 색차평가에 관한 연구(A Study on Clustering and Color Difference Evaluation of Color Image using HSV Color Space) pp.20~27 칼라화상을 화상부호화, 리모트 센싱, 컴퓨터비젼 등의 분야에 이용하기 위해서는 인간이 감각적으로 취급하기 쉬운 색공간으로 화상정보를 변환시켜야 한다. 색상, 명도, 채도를 근거로한 Munsell색공간은 인간의 색지각과 영역간의 색차가 일치하는 특징으로 인하여 칼라화상의 클러스터링에 이용되고 있다. 본 논문에서는 RGB입력화상을 ${L^*}{a^*}{b^*}$ 균등색공간으로 변환하고, 색지각과 일치되는 HSV색공간으로 근사화시킴으로써, 각 좌표축을 중심으로 클러스터링과 그 색차를 평가한다. 자기수렴 특성을 갖는 ISO DATA 알고리즘을 응용하여 HSV칼라화상의 영역을 분할하고, 과분할된 영역을 통합하는 방법을 제안하였다. 두 종류의 입력화상에 대한 클러스터링을, 색차를 기본으로 한 임계값에 따라 수행하므로써 화상내용의 복잡함에 대응하는 양호한 영역분할 결과를 제시하였다.

  • PDF

시공간 데이터를 위한 클러스터링 기법 성능 비교 (Performance Comparison of Clustering Techniques for Spatio-Temporal Data)

  • 강나영;강주영;용환승
    • 지능정보연구
    • /
    • 제10권2호
    • /
    • pp.15-37
    • /
    • 2004
  • 최근 데이터 양이 급증하면서 데이터 마이닝에 대한 연구가 활발하게 진행되고 있으며 특히 GPS 시스템, 감시시스템, 기상 관측 시스템과 같은 다양한 응용 시스템으로부터 수집된 데이터를 분석하고자 하는 시공간 데이터 마이닝 연구에 대한 관심이 더욱 높아지고 있다. 기존의 시공간 데이터 마이닝 연구들에서는 비시공간 데이터 기반의 일반적인 클러스터링 기법들을 그대로 적용하고 있으나 데이터의 속성이 다른 시공간 데이터 마이닝에서 기존의 알고리즘들이 어느 정도의 성능을 보장하는지, 데이터의 시공간 속성에 따라 적절한 마이닝 알고리즘을 선택하기 위한 기준이 무엇인지 등에 대한 연구는 미흡한 실정이다. 본 논문에서는 기존의 시공간 데이터 마이닝 연구에서 일반적으로 많이 사용되어 온 알고리즘인 SOM(Self-Organizing Map)을 기반으로 시공간 데이터 마이닝 모듈을 개발하고, 개발된 클러스터링 모듈의 성능을 K-means과 두 가지 응집 계층(Hierarchical Agglomerative) 알고리즘들과 균질도, 분리도, 반면영상 너비, 정확도의 네 가지 평가 기준을 기반으로 비교하였다. 또한 입력 데이터의 특성 가시화 및 클러스터링 결과의 정확한 분석을 위해 시공간 데이터 클러스터링을 위한 가시화 모듈을 개발하였다.

  • PDF

분산 모바일 서비스의 다중 스트리밍을 위한 가변 클러스터링 관리 (Variable Clustering Management for Multiple Streaming of Distributed Mobile Service)

  • 정택원;이종득
    • 한국지능시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.485-492
    • /
    • 2009
  • 모바일 서비스 환경에서 시간 동기화에 의해 생성된 패턴들은 데이터 스트리밍으로 인하여 인스턴스 값들이 다르게 스트리밍 된다. 본 논문에서는 유연한 클러스터링을 지원하기 위해 가변클러스터링 관리 기법을 제안하며, 이 구조는 다중 데이터 스트리밍을 동적으로 관리하도록 지원한다. 제안되는 기법은 일반적인 스트리밍기법과 달리 데이터 스트림 환경에서 동기화를 효율적으로 지원하는 기능을 수행하며, 구조적 표현단계와 적합성 표현단계를 거쳐 클러스터링 스트리밍이 관리된다. 구조적 표현 단계는 레벨정합과 누적정합을 수행하여 스트림 구조가 표현되며, 동적 세그먼트와 정적세그먼트 관리를 통해서 클러스터링 관리가 가변적으로 수행되도록 하였다. 제안된 기법의 성능 평가를 위해서 k-means 기법, C/S 서버기법 그리고 CDN 기법과 시뮬레이션평가를 수행하였으며 그 결과 제안된 기법의 성능이 효율적임을 알 수 있었다.

마이크로어레이 유전자 발현 자료에 대한 군집 방법 비교 (Comparison of clustering methods of microarray gene expression data)

  • 임진수;임동훈
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권1호
    • /
    • pp.39-51
    • /
    • 2012
  • 군집분석은 마이크로어레이 발현자료에서 유전자 혹은 표본들의 유사한 특성을 갖는 연관구조를 조사하는데 중요한 도구이다. 본 논문에서는 마이크로어레이 자료에서 계층적 군집방법, K-평균법, PAM (partitioning around medoids), SOM (self-organizing maps) 그리고 모형기반 군집방법 들의 성능을 3가지 군집 타당성 측도인 내적 측도, 안정적 측도 그리고 생물학적 측도를 가지고 비교분석하고자 한다. 모의실험을 통해 생성된 자료와 실제 SRBCT (small round blue cell tumor) 자료를 가지고 여러 가지 군집방법들의 성능을 비교하였으며 그 결과 모의실험 자료에서는 거의 모든 방법들이 3가지 군집측도에서 원래 자료와 일치하는 좋은 군집 결과를 나타내었고 SRBCT 자료에서는 모의실험 자료처럼 명확한 군집화 결과를 보여주지는 않으나 내적측도의 실루엣 너비 (Silhouette width) 관점에서는 PAM 방법, SOM, 모형기반 군집방법 그리고 생물학적 측도에서는 PAM 방법과 모형기반 군집방법이 모의실험 결과와 비슷한 결과를 얻었고 안정적 측도에서 모형기반 군집방법이 다른 방법들보다 좋은 군집결과를 보여주었다.

레이더 군집화를 위한 반복 K-means 클러스터링 알고리즘 (Repeated K-means Clustering Algorithm For Radar Sorting)

  • 박동현;서동호;백지현;이원진;장동의
    • 한국군사과학기술학회지
    • /
    • 제26권5호
    • /
    • pp.384-391
    • /
    • 2023
  • In modern electronic warfare, a number of radar emitters are in operation, causing radar receivers to receive high-density signal pulses that occur simultaneously. To analyze the radar signals more accurately and identify enemies, the sorting process of high-density radar signals is very important before analysis. Recently, machine learning algorithms, specifically K-means clustering, are the subject of research aimed at improving the accuracy of radar signal sorting. One of the challenges faced by these studies is that the clustering results can vary depending on how the initial points are selected and how many clusters number are set. This paper introduces a repeated K-means clustering algorithm that aims to accurately cluster all data by identifying and addressing false clusters in the radar sorting problem. To verify the performance of the proposed algorithm, experiments are conducted by applying it to simulated signals that are generated by a signal generator.

초등학교 저학년 어린이에서의 대사위험요인 군집의 분포와 관련 위험요인 (Clustering of Metabolic Risk Factors and Its Related Risk Factors in Young Schoolchildren)

  • 공경애;박보현;민정원;홍주희;홍영선;이보은;장남수;이선화;하은희;박혜숙
    • Journal of Preventive Medicine and Public Health
    • /
    • 제39권3호
    • /
    • pp.235-242
    • /
    • 2006
  • Objectives: We wanted to determine the distribution of the clustering of the metabolic risk factors and we wanted to evaluate the related factors in young schoolchildren. Methods: A cross-sectional study of metabolic syndrome was conducted in an elementary school in Seoul, Korea. We evaluated fasting glucose, triglyceride, HDL cholesterol, blood pressures and the body mass index, and we used parent-reported questionnaires to assess the potential risk factors in 261 children (136 boys, 125 girls). We defined the metabolic risk factors as obesity or at risk for obesity ($\geqq$ 85th percentile for age and gender), a systolic or diastolic blood pressure at $\geqq90th$ percentile for age and gender, fasting glucose at $\geqq110mg/dl$, triglyceride at $\geqq110mg/dl$ and HDL cholesterol at $\leqq40mg/dl$. Results: There were 15.7% of the subjects who showed clustering of two or more metabolic risk factors, 2.3% of the subjects who showed clustering for three or more risk factors, and 0.8% of the subjects who showed clustering for four or more risk factors. A multivariate analysis revealed that a father smoking more than 20 cigarettes per day, a mother with a body mass index of = $25kg/m^2$, and the child eating precooked or frozen food more than once per day were associated with clustering of two or more components, with the odds ratios of 3.61 (95% CI=1.24-10.48), 5.50 (95% CI=1.39-21.73) and 8.04 (95% CI=1.67-38.81), respectively. Conclusions: This study shows that clustering of the metabolic risk factors is present in young schoolchildren in Korea, with the clustering being associated with parental smoking and obesity as well as the child's eating behavior. These results suggest that evaluation of metabolic risk factors and intervention for lifestyle factors may be needed in both young Korean children and their parents.