• Title/Summary/Keyword: and clustering

Search Result 5,643, Processing Time 0.034 seconds

Areal Image Clustering using SOM with 2 Phase Learning (SOM의 2단계학습을 이용한 항공영상 클러스터링)

  • Lee, Kyunghee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.995-998
    • /
    • 2013
  • Aerial imaging is one of the most common and versatile ways of obtaining information from the Earth surface. In this paper, we present an approach by SOM(Self Organization Map) algorithm with 2 phase learning to be applied successfully to aerial images clustering due to its signal-to-noise independency. A comparison with other classical method, such as K-means and traditional SOM, of real-world areal image clustering demonstrates the efficacy of our approach.

  • PDF

Sensor Data Standardization using K-means Clustering in Distributed-Gateway System (분산 게이트웨이 환경에서의 K-means Clustering을 이용한 센서 데이터 평준화 기법)

  • Lee, Tae-Ho;Lim, Hwan-Hee;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.195-196
    • /
    • 2018
  • 본 논문에서는 IIoT(Industrial IoT) 환경에서 사용되는 각 종 센서의 특성을 고려하여 K-means clustering을 이용해 측정 주기에 따른 군집화를 통해 평준화함으로써 센서에서 게이트웨이로의 데이터 전송 시 일어날 수 있는 1:1 독점 통신 현상 및 작업부하를 해결 할 수 있는 기법을 제안한다. 본 논문에서는 해당 기법의 효율을 보다 극대화할 수 있는 분산 게이트웨이 환경에서 실험을 진행하였으며, 해당 실험의 결과에 따르면 분산 게이트웨이 시스템에서 사용되는 게이트웨이들의 작업부하가 현저히 낮아졌고 각 종 센서들이 할당되는 빈도수가 일정하게 나타남으로써 신뢰성과 정확성을 확보에 보다 우수함을 보인다.

  • PDF

On Color Cluster Analysis with Three-dimensional Fuzzy Color Ball

  • Kim, Dae-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.262-267
    • /
    • 2008
  • The focus of this paper is on devising an efficient clustering task for arbitrary color data. In order to tackle this problem, the inherent uncertainty and vagueness of color are represented by a fuzzy color model. By taking a fuzzy approach to color representation, the proposed model makes a soft decision for the vague regions between neighboring colors. A definition on a three-dimensional fuzzy color ball is introduced, and the degree of membership of color is computed by employing a distance measure between a fuzzy color and color data. With the fuzzy color model, a novel fuzzy clustering algorithm for efficient partition of color data is developed.

Clustering Algorithm Using a Center of Gravity for Grid-based Sample

  • Park, Hee-Chang;Ryu, Jee-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.217-226
    • /
    • 2005
  • Cluster analysis has been widely used in many applications, such as data analysis, pattern recognition, image processing, etc. But clustering requires many hours to get clusters that we want, because it is more primitive, explorative and we make many data an object of cluster analysis. In this paper we propose a new clustering method, 'Clustering algorithm using a center of gravity for grid-based sample'. It reduces running time by using grid-based sample and keeps accuracy by using representative point, a center of gravity.

  • PDF

Color image segmentation using the possibilistic C-mean clustering and region growing (Possibilistic C-mean 클러스터링과 영역 확장을 이용한 칼라 영상 분할)

  • 엄경배;이준환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.97-107
    • /
    • 1997
  • Image segmentation is teh important step in image infromation extraction for computer vison sytems. Fuzzy clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are derived from the fuzzy c-means (FCM) algorithm. The FCM algorithm uses th eprobabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belongingor compatibility. moreover, the FCM algorithm has considerable trouble above under noisy environments in the feature space. Recently, the possibilistic C-mean (PCM) for solving growing for color image segmentation. In the PCM, the membersip values may be interpreted as degrees of possibility of the data points belonging to the classes. So, the problems in the FCM can be solved by the PCM. The clustering results by just PCM are not smoothly bounded, and they often have holes. So, the region growing was used as a postprocessing. In our experiments, we illustrated that the proposed method is reasonable than the FCM in noisy enviironments.

  • PDF

Effective Acoustic Model Clustering via Decision Tree with Supervised Decision Tree Learning

  • Park, Jun-Ho;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.10 no.1
    • /
    • pp.71-84
    • /
    • 2003
  • In the acoustic modeling for large vocabulary speech recognition, a sparse data problem caused by a huge number of context-dependent (CD) models usually leads the estimated models to being unreliable. In this paper, we develop a new clustering method based on the C45 decision-tree learning algorithm that effectively encapsulates the CD modeling. The proposed scheme essentially constructs a supervised decision rule and applies over the pre-clustered triphones using the C45 algorithm, which is known to effectively search through the attributes of the training instances and extract the attribute that best separates the given examples. In particular, the data driven method is used as a clustering algorithm while its result is used as the learning target of the C45 algorithm. This scheme has been shown to be effective particularly over the database of low unknown-context ratio in terms of recognition performance. For speaker-independent, task-independent continuous speech recognition task, the proposed method reduced the percent accuracy WER by 3.93% compared to the existing rule-based methods.

  • PDF

Design of Spatial Clustering Method for Data Mining of Various Spatial Objects (다양한 공간객체의 데이터 마이닝을 위한 공간 클러스터링 기법의 설계)

  • 문상호;최진오;김진덕
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.955-959
    • /
    • 2004
  • Existing Clustering Methods for spatial data mining process only Point objects, not spatial objects with polygonometry such as lines and areas. It is because that distance computation between objects with polygonometry for clustering is more complex than distance computation between point objects. To solve this problem, we design a clustering method based on regular grid cell structures. In details, it reduces cost and time for distance computation using cell relationships in grid cell structures.

Design of Spatial Clustering Method for Spatial Objects with Polygonometry (다각형 객체를 지원하는 공간 클러스터링 기법의 설계)

  • 황지완;문상호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.374-377
    • /
    • 2004
  • Existing Clustering Methods for spatial data mining process only point objects, not objects with polygonometry such as lines and areas. It is because that distance computation between objects with polygonomery for clustering is more complex than point objects. To solve this problem, we design a clustering method based on regular grid cell structures. In details, it refutes cost and time for distance computation using cell relationships in grid cell structures.

  • PDF

Identification of Regression Outliers Based on Clustering of LMS-residual Plots

  • Kim, Bu-Yong;Oh, Mi-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.485-494
    • /
    • 2004
  • An algorithm is proposed to identify multiple outliers in linear regression. It is based on the clustering of residuals from the least median of squares estimation. A cut-height criterion for the hierarchical cluster tree is suggested, which yields the optimal clustering of the regression outliers. Comparisons of the effectiveness of the procedures are performed on the basis of the classic data and artificial data sets, and it is shown that the proposed algorithm is superior to the one that is based on the least squares estimation. In particular, the algorithm deals very well with the masking and swamping effects while the other does not.

Table based Single Pass Algorithm for Clustering News Articles

  • Jo, Tae-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.231-237
    • /
    • 2008
  • This research proposes a modified version of single pass algorithm specialized for text clustering. Encoding documents into numerical vectors for using the traditional version of single pass algorithm causes the two main problems: huge dimensionality and sparse distribution. Therefore, in order to address the two problems, this research modifies the single pass algorithm into its version where documents are encoded into not numerical vectors but other forms. In the proposed version, documents are mapped into tables and the operation on two tables is defined for using the single pass algorithm. The goal of this research is to improve the performance of single pass algorithm for text clustering by modifying it into the specialized version.