• Title/Summary/Keyword: and channel instability

Search Result 115, Processing Time 0.033 seconds

Investigation on the Liquid Water Droplet Instability in a Simulated Flow Channel of PEMFC (고분자전해질형 연료전지의 유로 채널 모사를 통한 단일 액적의 불안정성 관찰)

  • Kim, Bo-Kyung;Kim, Han-Sang;Min, Kyung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.93-98
    • /
    • 2008
  • To investigate the characteristics of water droplet on the gas diffusion layer from both top-view and side-view of the flow channel, a rig test apparatus was designed and fabricated with prism attached plate. This experimental device is used to simulate the growth of single liquid water droplet and its transport process with various air flow velocity and channel height. The contact angle hysteresis and height of water droplet are measured and analyzed. It is found that droplet tends towards to be instable by decreasing channel height, increasing flow velocity or making GDL more hydrophobic. Also, the simplified force balance model matches with experimental data only in a restricted range of operating conditions and shows discrepancy as the air flow velocity and channel height increases.

The Effect of Light on Amorphous Silicon Thin Film Transistors based on Photo-Sensor Applications

  • Ha, Tae-Jun;Park, Hyun-Sang;Kim, Sun-Jae;Lee, Soo-Yeon;Han, Min-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.953-956
    • /
    • 2009
  • We have investigated the effect of light on amorphous silicon thin film transistors based photo-sensor applications. We have analyzed the instability caused by electrical gate bias stresses under the light illumination and the effect of photo-induced quasi-annealing on the instability. Threshold voltage ($V_{TH}$) under the negative gate bias stress with light illumination was more decreased than that under the negative gate bias stress without light illumination even though $V_{TH}$ caused by the light-induced stress without negative gate bias was shifted positively. These results are because the increase of carrier density in a channel region caused by the light illumination has the enhanced effect on the instability caused by negative gate bias stress. The prolonged light illumination led to the recovery of shifted VTH caused by negative gate bias stress under the light illumination due to the recombination of trapped hole charges.

  • PDF

A Light-induced Threshold Voltage Instability Based on a Negative-U Center in a-IGZO TFTs with Different Oxygen Flow Rates

  • Kim, Jin-Seob;Kim, Yu-Mi;Jeong, Kwang-Seok;Yun, Ho-Jin;Yang, Seung-Dong;Kim, Seong-Hyeon;An, Jin-Un;Ko, Young-Uk;Lee, Ga-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.315-319
    • /
    • 2014
  • In this paper, we investigate visible light stress instability in radio frequency (RF) sputtered a-IGZO thin film transistors (TFTs). The oxygen flow rate differs during deposition to control the concentration of oxygen vacancies, which is confirmed via RT PL. A negative shift is observed in the threshold voltage ($V_{TH}$) under illumination with/without the gate bias, and the amount of shift in $V_{TH}$ is proportional to the concentration of oxygen vacancies. This can be explained to be consistent with the ionization oxygen vacancy model where the instability in $V_{TH}$ under illumination is caused by the increase in the channel conductivity by electrons that are photo-generated from oxygen vacancies, and it is maintained after the illumination is removed due to the negative-U center properties.

Unsteady Flow Analysis through the Subcritical-Supercritical Transition Region (개수로에서의 상류-사류 천이영역에 대한 부정류 해석)

  • 한건연;박재홍;이종태
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.85-96
    • /
    • 1994
  • Numerical instability of Preissmann scheme is studied for unsteady flow analysis in a natural river. The solution strategies to overcome the instability problems are presented in this paper. The main causes of numerical instability of Preissmann scheme are transition flow, abrupt change in cross section, in-appropriate roughness coefficients, time step and distance step, rapidly rising hydrograph, dry bed and so on. Transition flow model is proposed for the analysis of the transition flow which changes from subcritical to supercritical or conversely. The subcritical and supercritical reaches are groped in the channel, then appropriate boundary conditions are introduced for each reach. The transition flow analysis produces stable solutions in calculating through the various transition conditions. Verification with an actual river system is necessary in the future.

  • PDF

Micro-PIV Measurement of Water/Oil Two Phase Flow in a Y-Junction Microchannel (Y형 마이크로채널에서의 물/기름 2상 유동에 대한 Micro-PIV 측정)

  • Yoon,Sang-Youl;Ko, Choon-Sik;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.682-687
    • /
    • 2004
  • Y-junction microchannels are widely used as a flew mixer. Fluids are entered from two branch channels and merged together at a combined channel. In this study, we suggest a simple method to create the fluid digitization using flow instability phenomena. Two immiscible liquids (water/oil) are infused continuously to each Y-junction inlets. Because of the differences in fluid and flow properties at the interface, oil droplet is formed automatically followed by flow instability. In order to clarify the hydrodynamic aspects involved in oil droplet formation, a quantitative flow visualization study has performed. Highly resolved velocity vector fields are obtained by a micro-PIV technique, so that detail flow structures around the droplet are illustrated. In this study, fluorescent particles were mixed with water only for visualization of oil droplet and velocity field measurement in water flow.

Reconfigurable Intelligent Surface assisted massive MIMO systems based on phase shift optimization

  • Xuemei Bai;Congcong Hou;Chenjie Zhang;Hanping Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.2027-2046
    • /
    • 2024
  • Reconfigurable Intelligent Surface (RIS) is an innovative technique to precisely control the phase of incident signals with the help of low-cost passive reflective elements. It shows excellent potential in the sixth generation of mobile communication systems, which not only extends wireless coverage but also boosts channel capacity. Considering that multipath propagation and a high number of antennas are involved in RIS in assisted mega multiple-input multiple-output (MIMO) systems, it suffers from severe channel fading and multipath effects, which in turn lead to signal instability and degradation of transmission performance. To overcome this obstacle, this essay suggests an improved gradient optimization algorithm to dynamically and optimally adjust the phase of the reflective elements to counteract channel fading and multipath effects as a strategy. In order to overcome the optimization problem of falling into local minima, this paper proposes an adaptive learning rate algorithm based on Adagrad improvement, which searches for the global optimal solution more efficiently and improves the robustness of the optimization algorithm. The suggested technique helps to enhance the estimate of channel efficiency of RIS-assisted large MIMO systems, according to simulation results.

VSB-Based Digital On-Channel Repeater with Interference Cancellation System

  • Lee, Jae-Kwon;Suh, Young-Woo;Choi, Jin-Yong;Seo, Jong-Soo
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.670-678
    • /
    • 2011
  • This paper investigates the design and performance of a digital on-channel repeater (DOCR) for use in Advanced Television Systems Committee (ATSC) digital television (DTV) broadcasting. The main drawback of a DOCR is the echo interference caused by coupling between transmitter and receiver antennas, which induces system instability and performance degradation. In order to overcome this problem, an echo canceller based on the adaptive echo channel estimation (ECE) technique has been researched and applied for a DOCR. However, in the case of ATSC, the pilot signal, which is used for carrier synchronization, may cause a DC offset error and reduce the isolation performance of the echo canceller for a DOCR in an ATSC network. Moreover, since the multipath fading effect of a radio channel usually occurs in a real environment, it should be minimized to improve the overall performance of a DOCR. Therefore, due to the limited isolation performance of echo canceller and the multipath fading effect, an interference cancellation system (ICS) is proposed for a DOCR in an ATSC network. The performance of the proposed DOCR with an ICS is evaluated by software simulation and hardware test results.

Effects of thin-film thickness on device instability of amorphous InGaZnO junctionless transistors (박막의 두께가 비정질 InGaZnO 무접합 트랜지스터의 소자 불안정성에 미치는 영향)

  • Jeon, Jong Seok;Jo, Seong Ho;Choi, Hye Ji;Park, Jong Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1627-1634
    • /
    • 2017
  • In this work, a junctionless transistor with different film thickness of amorphous InGaZnO has been fabricated and it's instability has been analyzed with different film thickness under positive and negative gate stress as well as light illumination. It was found that the threshold voltage shift and the variation of drain current have been increased with decrease of film thickness under the condition of gate stress and light illumination. The reasons for the observed results have been explained by stretched-exponential model and device simulation. Due to the reduced carrier trapping time with decrease of film thickness, electrons and holes can be activated easily. Due to the increase of vertical channel electric field reaching the back interface with decrease of film thickness, more electrons and holes can be accumulated in back interface. When one decides the film thickness for the fabrication of junctionless transistor, the more significant device instability with decrease of film thickness should be consdered.

Study on Single-Phase Thermal and Hydrodynamic Characteristics in the Entry Region of a Mini-Channel Heat Sink (히트싱크 미세채널 내의 입구유동 영역에서의 단상 열유동 특성에 관한 연구)

  • Jang, Yong-Hee;Kim, Yong-Chan;Lee, Kyu-Jeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1007-1016
    • /
    • 2006
  • Although the advance in electronic technology enables a large number of circuity to be packed in a small volume, it is simultaneously required to remove the high heat load produced by them. In this study, the heat transfer and pressure drop characteristics of a mini-channel heat exchanger, which is designed for liquid cooling of electronic components, are investigated by varying operating conditions. Water and FC-72 were used as working fluids. The mini-channel heat exchanger was made with circular shape channels having din-meters of 2, 3, and 4 mm in regular intervals, and the channel length was 100 mm. The header and inlet guide pathway to provide uniform inflow were attached at the inlet of the test section. Copper block including the heaters was attached at the sidewall of the test section as a heat source, which provided the heat flux from 5 to $15W/cm^2$. The entrance effects enhanced the heat transfer coefficient in the mini-channel significantly. In addition, the single-phase pressure drop in the mini-channel was very similar to that predicted by the laminar flow correlation except that the transition Re decreased due to flow instability in the entrance region.

시간 지연이 있는 양방향 원격조작 제어 기술 동향

  • Seo, Chang-Hun;Park, Seong-Jun;Ryu, Je-Ha
    • ICROS
    • /
    • v.17 no.2
    • /
    • pp.27-35
    • /
    • 2011
  • This paper presents the state of the art of control strategies for bilateral teleoperation systems under time delays. In the bilateral teleoperation that has force feedback, the time delay in the communication channel is the main source of instability. To cope with this problem. a number of control methods have been proposed. Among many control strategies. key aspects of the recent passivity-based methods are mainly summarized for approaches with wave variables. PO/PC (passivity observer/passivity controller), simple PD, and energy bounds.