• Title/Summary/Keyword: and TCP

검색결과 2,086건 처리시간 0.03초

Analysis of the TCP performance over IEEE1394 based Home Networkings (IEEE1394 기반의 홈 네트워킹에서의 TCP 성능 분석)

  • 장종욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제5권4호
    • /
    • pp.706-715
    • /
    • 2001
  • TCP typically offers reasonable end-to-end performance to users regardless of the bandwidth and error characteristics of particular network technology, The robustness of TCP has contributed to its success in the internet environment. The role of communications is already well established in the office environment. With the advent of cheap, affordable broadband communications and the increasing complexity of consumer goods, it seems natural to extend the network into homes. In-home networking means a high-speed communication among the digital appliances within a home. Introduction of application over high-speed home network using TCP/IP protocol is increasing. The integrated environment of internet and home network is demanding as well. We have validated TCP model over high speed home network environment, investigated the throughput behavior of TCP over IEEE 1399 home networks, and evaluated a potential solution for high performance of TCP over IEEE 139t home networks. The simulation model has produced several interesting results in the performance of TCP over IEEE 1394 home network.

  • PDF

Design and Implementation of TCP Supporting Optional Encryption Functionalities (선택적인 암호화 기능을 지원하는 TCP의 설계 및 구현)

  • Seong, Jeong-Gi;Kim, Eun-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제22권1호
    • /
    • pp.190-195
    • /
    • 2018
  • Recently, Due to the ongoing increase in cyber attacks and the improved awareness of privacy protection, most Internet services encrypt the traffic by using security protocols. Existing security protocols usually have additional layer between transport layer and application layer, and they incur additional costs because of encrypting all the traffic transmitted. This results in unnecessary performance degradation because it also encrypts data that does not require confidentiality. In this paper, we propose TCP OENC(Optional Encryption) which enables users of the application layer to optionally encrypt only confidential data. TCP OENC operates by TCP option to allow the application layer to encrypt the TCP stream transmitted only on demand. And it ensures transparency between the TCP layer and the application layer. To verify this, we verified that TCP OENC optionally encrypts the stream of TCP session on the embedded board. And then analyzed the performance of the encrypted stream by measuring the elapsed time.

TCP Performance Improvement Scheme on Dynamic Wireless Environment over UMTS System (UMTS 시스템에서 동적 무선 환경 변화에 따른 TCP 성능 향상 기법)

  • Kim, Nam-Ki;Park, In-Yong;Yoon, Hyun-Soo
    • The KIPS Transactions:PartC
    • /
    • 제10C권7호
    • /
    • pp.943-954
    • /
    • 2003
  • The mobile telecommunication system has been growing exponentially after 1990s due to the high population in a city and the growth of mobile user. In this time, the current mobile system mainly concentrates on the voice communication. However, in the next generation, mobile users want to get very diverse services via mobile terminal such as the Internet access, web access, multimedia communication, and etc. For this reason, the next generation system, such as the UMTS (Universal Mobile Telecommunication Services) system, has to support the packet data service and it will play the major role in the system. By the way, since the Web service is based on TCP, most of the Internet traffic TCP traffic. Therefore, efficient transmission of TCP traffic will take very important role in the performance of packet data service. There are many researches about improving TCP performance over wireless network. In those schemes, the UMTS system adapts the link layer retransmission scheme. However, there are rarely studies about the exact performance of the link layer retransmission scheme in the face of dynamic changes of wireless environment over the UMTS system. The dynamic changes of wireless environment, such as wireless bandwidth, can degrade TCP performance directly. So, in this paper, we simulate and analyze the TCP performance in the UMTS system with dynamic wireless environments. Then, we propose a simple scheme for minimizing TCP performance degradation. As a result of simulation, we can find that when wireless environment is changed dynamically, the probability of TCP timeout is increased, and the TCP performance is degraded very much. In this situation, the proposed simple scheme shows good performance. It saves wireless resources and reduces the degradation of TCP performance without large overhead of the base station.

Effects of Retransmission Timeouts on TCP Performance and Mitigations: A Model and Verification (재전송 타임아웃이 TCP 성능에 미치는 영향과 완화 방안들의 모델링을 통한 성능 분석)

  • 김범준;김석규;이재용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제29권7B호
    • /
    • pp.675-684
    • /
    • 2004
  • There have been several efforts to avoid unnecessary retransmission timeouts (RTOs), which is the main cause for TCP throughput degradation. Unnecessary RTOs can be classified into three groups according to their cause. RTOs due to multiple packet losses in the same window for TCP Reno, the most prevalent TCP version, can be avoided by TCP NewReno or using selective acknowledgement (SACK) option. RTOs occurring when a packet is lost in a window that is not large enough to trigger fast retransmit can be avoided by using the Limited Transmit algorithm. In this Paper, we comparatively analyze these schemes to cope with unnecessary RTOs by numerical analysis and simulations. On the basis of the results in this paper, TCP performance can be quantitatively predicted from the aspect of loss recovery probability. Considering that overall performance of TCP is largely dependent upon the loss recovery performance, the results shown in this paper are of great importance.

An Enhanced TCP Congestion Control using Link-Error Rates at Wireless Edges (무선 에지의 링크 오류율을 이용한 개선된 TCP 혼잡제어)

  • Oh, Jun-Seok;Park, Tan-Se;Park, Chang-Yun;Jung, Choong-Il
    • Journal of KIISE:Computing Practices and Letters
    • /
    • 제16권7호
    • /
    • pp.794-798
    • /
    • 2010
  • Assuming that a wireless link is mostly used at the network edge and the wireless NIC driver keeps monitoring the error rate of its link, this paper proposes an enhanced TCP congestion control, TCP-L (TCP Link-Aware). TCP-L predicts true congestion losses occurred inside the wired link area by utilizing the wireless link error rate. As a result, it mitigates performance degradation caused from TCP congestion control actions when segments losses occur in a wireless link. Experimental results show that TCP-L provides better performance and fairness in lossy wireless links than existing TCP congestion control schemes. Our approach utilizing the characteristic of the link at TCP could be well adapted to new wireless environments such as Cognitive Radio and ACK-less IEEE 802.11, where a frame may be delivered with a very long delay or lost in the link.

Self-Adaptation framework for TCP Selection (TCP 선택을 위한 자동 적응 프레임워크)

  • Hwang, Jae-Hyun;Yoo, Chuck
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제34권2B호
    • /
    • pp.130-142
    • /
    • 2009
  • In this paper, we propose a self-adaptation framework that selects a TCP variant adapted to current end-to-end path among available TCP variants. There is no single version of TCP that is suitable to all network environments since the causes for performance degradation are different one another according to characteristics of network environments. Thus, determining that which TCP variants should be selected in order to get best performance is very important. To enable adaptation through such determination, we integrate the existing network estimation schemes and some TCP variants into our framework then make light-weight performance knowledge database for TCP selection. Through implementing and evaluating the proposed framework we show that our solution can help TCP get high and stable performance on the various types of network environments by pure end-to-end.

Modeling TCP Loss Recovery for Random Packet Losses (임의 패킷 손실에 대한 TCP의 손실 복구 과정 모델링 및 분석)

  • Kim, Beom-Joon;Kim, Dong-Yeon;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제28권4B호
    • /
    • pp.288-297
    • /
    • 2003
  • The fast retransmit and fast recovery algorithm of TCP Reno, when multiple packets in the same window are lost, cannot recover them without RTO (Retransmission Timeout). TCP New-Reno can recover multiple lost packets by extending fast recovery using partial acknowledgement. If the retransmitted packet is lost again during fast recovery, however, RTO cannot be avoided. In this paper, we propose an algorithm called "Duplicate Acknowledgement Counting(DAC)" to alleviate this problem. DAC can detect the retransmitted packet loss by counting duplicate ACKs. Conditions that a lost packet can be recovered by loss recovery of TCP Reno, TCP New-Reno and TCP New-Reno using DAC are derived by modeling loss recovery behavior of each TCP. We calculate the loss recovery probability for random packet loss probability numerically, and show that DAC can improve loss recovery behavior of TCP New-Reno.

Performance Improvement of Wireless Mesh Networks using TCP Congestion Control Algorithm (TCP 혼잡제어 알고리즘을 이용한 무선 메쉬 네트워크의 성능 개선)

  • Lee, Hye-Rim;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • 제14권2호
    • /
    • pp.253-259
    • /
    • 2010
  • Wireless mesh network is flexible network like Ad hoc network or bluetooth together based on base station. But, wireless mesh network shows high packet loss and when TCP was created, however as it was design based on wired link, wireless link made more transmission error than wired link. It is existent problem of TCP congestion control algorithm that TCP unfairness and congestion collapse over wireless mesh network. When TCP operation occurs with the packet loss where is not the congestion loss, it brings the performance degradation which is serious. In this paper, in order to improve efficient TCP congestion control algorithm in wireless mesh network, we proposed that TCP can adaptively regulate the congestion window in wireless link.

Improving Loss Recovery Performance of TCP SACK by Retransmission Loss Recovery (재전송 손실 복구를 통한 TCP SACK의 성능 향상 모델링 및 분석)

  • 김범준;김동민;이재용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제29권7B호
    • /
    • pp.667-674
    • /
    • 2004
  • The performance of transmission control protocol (TCP) is largely dependent upon its loss recovery. Therefore, it is a very important issue whether the packet losses may be recovered without retransmission timeout (RTO) or not. Although TCP SACK can recover multiple packet losses in a window, it cannot avoid RTO if a retransmitted packet is lost again. In order to alleviate this problem, we propose a simple change to TCP SACK, which is called TCP SACK+ in simple. We use a stochastic model to evaluate the performance of TCP SACK+, and compare it with TCP SACK. Numerical results evaluated by simulations show that SACK+ can improve the loss recovery of TCP SACK significantly in presence of random losses.

Estimation of TCP Throughput Fairness Ratio under Various Background Traffic (다양한 백그라운드 트래픽이 존재하는 경우의 TCP 공정성 비율 측정)

  • Lee, Jun-Soo;Kim, Ju-Kyun
    • Journal of Korea Multimedia Society
    • /
    • 제11권2호
    • /
    • pp.197-205
    • /
    • 2008
  • TCP packets occupy over 90% of current Internet traffic thus understanding of TCP throughput is crucial to understand Internet. Under the TCP congestion regime, heterogeneous flows, i.e., flows with different round-trip times (RTTs), that share the same bottleneck link will not attain equal portions of the available bandwidth. In fact, according to the TCP friendly formula, the throughput ratio of two flows is inversely proportional to the ratio of their RTTs. It has also been shown that TCP's unfairness to flows with longer RTTs is accentuated under loss synchronization. In this paper, we show that, injecting bursty background traffic may actually lead to new type of synchronization and result in unfairness to foreground TCP flows with longer RTTs. We propose three different metrics to characterize traffic burstiness and show that these metrics are reliable predictors of TCP unfairness.

  • PDF