• Title/Summary/Keyword: and TCP

Search Result 2,094, Processing Time 0.023 seconds

Enhanced TCP Congestion Control Mechanism for Networks with Large Bandwidth Delay Product (대역폭과 지연의 곱이 큰 네트워크를 위한 개선된 TCP 혼잡제어 메카니즘)

  • Park Tae-Joon;Lee Jae-Yong;Kim Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.126-134
    • /
    • 2006
  • Traditional TCP implementations have the under-utilization problem in large bandwidth delay product networks especially during the startup phase. In this paper, we propose a delay-based congestion control(DCC) mechanism to solve the problem. DCC is subdivided into linear and exponential growth phases. When there is no queueing delay, the congestion window grows exponentially during the congestion avoidance period. Otherwise, it maintains linear increase of congestion window similar to the legacy TCP congestion avoidance algorithm. The exponential increase phase such as the slow-start period in the legacy TCP can cause serious performance degradation by packet losses in case the buffer size is insufficient for the bandwidth-delay product, even though there is sufficient bandwidth. Thus, the DCC uses the RTT(Round Trip Time) status and the estimated queue size to prevent packet losses due to excessive transmission during the exponential growth phase. The simulation results show that the DCC algorithm significantly improves the TCP startup time and the throughput performance of TCP in large bandwidth delay product networks.

TCP Performance Improvement Scheme Using 802.11 MAC MIB in the Wireless Environment (무선 환경에서 802.11 MAC의 MIB 정보를 이용한 TCP 성능 개선 방법)

  • Shin, Kwang-Sik;Kim, Ki-Won;Yoon, Jun-Chul;Kim, Kyung-Sub;Jang, Mun-Suck;Choi, Sang-Bang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.477-487
    • /
    • 2008
  • Congestion control of the TCP reduces transmission rate when it detects packet loss because packet loss origines from congestion in the wired network. In the wireless network, packet loss comes from channel errors. Wired TCP degrades performance when there are wireless losses because it does not classify type of loss. These day, there are many researches which classify type of loss between congestion loss and wireless loss for wired-wireless hybrid network. For wireless TCP, many of existing algorithms are based on the estimated bandwidth or variations of packet arrival time. In this paper, we propose a new TCP scheme to distinguish the wireless packet losses from the congestion packet losses using MIB of the IEEE 802.11 MAC. We perform excessive simulations using the NS-2 network simulator and analyze the simulation results to compare the performance of the proposed algorithm to other well-known algorithms. From simulation results, we know that proposed algorithm improves performance about 12% and 32% compared with Spike algorithm and mBiaz algorithm, respectively.

Traffic Throughput on based Link Available in M-TCP Transfer (M-TCP 전송에서 링크 이용율에 따른 트래픽 처리)

  • Song, Sun-Hee;Suk, Kyung-Hyu;Kim, Kwan-Jun;Kim, Moon-Hwan;Park, Dong-Suk;Bae, Chul-Soo;Ra, Sang-Dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.599-602
    • /
    • 2005
  • 무선네트워크 TCP는 패킷손실을 혼잡에 의한 것으로 보고 전송률을 감소시키는데, 고대역폭 연결의 효율성을 높이기 위해 M-TCP에서의 링크이용율에 따른 트래픽 처리를 연구한다. M-TCP는 무선네트워크에서 연결 중단이 자주 발생하고 동적으로 변하는 대역폭으로 인한 비트율이 낮은 무선 링크에 효과적인 프로토콜이다. 연견 중단 시 송신노드가 인접한 경우나 멀리 떨어져 있는 경우 유리하며, M-TCP가 링크 계층 솔루션과 함께 사용될 경우 TCP 성능이 향상된다. 본 논문에서는 백그라운드 트래픽 흐름은 그대로 유지하여 M-TCP상에서 연결의 개수를 늘린 후 그 결과 발생하는 대역폭 공유 반응 및 링크 이용율로 M-TCP 연결로부터 생긴 트래픽 처리를 분석한다.

  • PDF

A New Congestion Control Algorithm for Improving Fairness in TCP Vegas (TCP Vegas에서 공정성 향상을 위한 혼잡제어 알고리즘)

  • Lee, Sun-Hun;Song, Byung-Hoon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.5
    • /
    • pp.583-592
    • /
    • 2005
  • An important factor influencing the robustness of the Internet is the end-to-end TCP congestion control. However, the congestion control scheme of TCP Reno, the most popular TCP version on the Internet, employs passive congestion indication. It makes the network congestion worse. Brakmo and Peterson proposed a congestion control algorithm, TCP Vegas, by modifying the congestion avoidance scheme of TCP Reno. Many studies indicate that Vegas is able to achieve better throughput and higher stability than Reno. But there are three unfairness problems in Vegas. These problems hinder the spread of Vegas in the current Internet. In this paper, in order to solve these unfairness problems, we propose a new congestion control algorithm called TCP NewVegas. The proposed NewVegas is able to solve these unfairness problems effectively by using the variation of the number of queued packets in a bottleneck router. To evaluate the proposed approach, we compare the performance among NewVegas, Reno and Vegas. Through the simulation, NewVegas is shown to be able to achieve throughput and better fairness than Vegas.

TCP Throughput Effective Vertical Handoff Decision Scheme for Heterogeneous Wireless Networks (이기종 무선망에서의 TCP 성능 기반 수직적 핸드오프 결정 방안)

  • Seok, Woo-Jin;Choi, Young-Hwan;Kim, Sang-Ha
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.6
    • /
    • pp.505-513
    • /
    • 2007
  • Vertical handoff is a new type of handoff in wireless networks. It is issued when a mobile node moves over overlapping wireless networks with each proving a different access bandwidth, transmission latency, and coverage. By issuing the vertical handoff, the mobile node can obtain better network bandwidth. In the sense of TCP throughput, however, the vertical handoff does not always produce positive performance gain, so sometimes it is better for the mobile node to stay at lower bandwidth providing network rather than to select and move to higher bandwidth providing network. In this paper, we analyze TCP throughput for vertical handoff, and propose a new handoff decision scheme which can estimate TCP throughput at the moment of vertical handoff. Based on the estimation, a mobile node can decide to issue vertical handoff to produce better TCP throughput, and we verify the results by simulations.

Congestion Control Scheme for Efficient Multimedia Transmission in Broadband Wireless Networks (광대역 무선 네트워크에서 효율적인 멀티미디어 전송을 위한 혼잡 제어 기법)

  • Lee, Eunjae;Chung, Kwangsue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1599-1609
    • /
    • 2014
  • TCP does not ensure the bandwidth and delay bound required for multimedia streaming services in broadband wireless network environments. In this paper, we propose a new congestion control scheme for efficient multimedia transmission, called COLO TCP (Concave Increase Slow Start Logarithmic Increase Congestion Avoidance TCP). The COLO TCP prevents the burst packet loss by applying the concave increase algorithm in slow start phase. In the congestion avoidance phase, COLO TCP uses the logarithmic increase algorithm that quickly recovers congestion window after packet loss. To highly utilize network bandwidth and reduce packet loss ratio, COLO TCP uses additive increase algorithm and adaptive decrease algorithm. Through simulation results, we prove that our COLO TCP is more robust for random loss. It is also possible for efficient multimedia transmission.

Enhanced Snoop Protocol for Improving TCP Throughput in Wireless Links (무선 링크에서 TCP 처리율 향상을 위한 Enhanced Snoop 프로토콜)

  • Cho Yong-bum;Won Gi-sup;Cho Sung-joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6B
    • /
    • pp.396-405
    • /
    • 2005
  • Snoop protocol is one of the efficient schemes to compensate TCP packet loss and enhance TCP throughput in wired-cum-wireless networks. However, Snoop protocol has a problem; it cannot perform local retransmission efficiently under the bursty-error prone wireless link. In this paper, we propose Enhanced Snoop(E-Snoop) protocol to solve this problem of Snoop protocol. With E-Snoop protocol, packet losses can be noticed by receiving new ACK packets as well as by receiving duplicate ACK packets or local retransmission timeout. Therefore, TCP throughput can be enhanced by fast recognition of bursty packet losses and fast local retransmissions. From the simulation results, E-Snoop protocol can improve TCP throughput more efficiently than Snoop protocol and can yield more TCP improvement especially in the channel with high packet loss rates.

SACK-SNOOP Protocol for Wireless TCP Performance Improvement (무선 TCP 성능 향상을 위한 SACK-SNOOP 프로토콜)

  • Ahn, Chi-Hyun;Kim, Hyung-Chul;Woo, Jong-Jung;Kim, Jang-Hyung;Lee, Dae-Young;Jun, Kye-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.392-401
    • /
    • 2007
  • Wireless network has high BER characteristic because of path loss, fading, noise and interference. Many packet losses occur without any congestion in wireless network. Therefore, many wireless TCP algorithms have been proposed. SNOOP, one of wireless TCP algorithms, hides packet losses for Fixed Host and retransmits lost packets in wireless network. However, SNOOP has a weakness for bust errors in wireless network. This paper proposes the SACK-SNOOP to improve TCP performance based on SNOOP and Freeze-TCP that use ZWA messages in wireless network. This message makes FH stop sending packets to MH. BS could retransmit error packets to MH for this time. SACK-SNOOP use improved Selective ACK, thereby reducing the number of packet sequences according to error environment. This method reduces the processing time for generation, transmission, analysis of ACK. This time gain is enough to retransmit local burst errors in wireless link. Furthermore, SACK-SNOOP can manage the retransmitted error by extending delay time to FH. The simulation shows that our proposed protocol is more effective for packet losses in wireless networks.

Design and Performance Evaluation of Support Vector Machine based Loss Discrimination Algorithm for TCP Performance Improvement (TCP 성능개선을 위한 SVM 기반 LDA 설계 및 성능평가)

  • Kim, Do-Ho;Lee, Jae-Yong;Kim, Byung-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.451-453
    • /
    • 2019
  • Recently, as the use of wireless communication devices has increased, the wireless network usage has increased, and a wired network and a wireless network have been mixed to form a network. Existing TCP algorithms are designed for wired networks. Therefore, in the modern network environment, packet loss can not be accurately distinguished and improper congestion control is performed, resulting in degradation of TCP performance. In this paper, we propose SLDA (Support Vector Machine based Loss Discrimination Algorithm) which can accurately classify the packet loss environment to improve TCP performance and evaluate its performance.

  • PDF

Fabrication and Characteristic Evaluation of Three-Dimensional Blended PCL (60 wt %)/β-TCP (40 wt %) Scaffold (3 차원 Blended PCL (60 wt %)/β-TCP (40 wt %) 인공지지체의 제작 및 특성 평가)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.371-377
    • /
    • 2014
  • In tissue engineering, a scaffold is a three-dimensional(3D) structure that serves as a template for regeneration the functions of damaged tissues or organs. Among materials for scaffolds, polycaprolactone(PCL) and ${\beta}$-tricalcium phosphate(${\beta}$-TCP) are biodegradable and biocompatible. In this study, we fabricated 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %), and pure ${\beta}$-TCP scaffolds by a multi-head scaffold fabrication system. Scaffolds with a pore size of $600{\pm}20{\mu}m$ was observed by scanning electron microscopy. The effects of 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) and pure ${\beta}$-TCP scaffolds were analyzed by evaluating their mechanical characteristics. In addition, in an in-vitro study using osteoblast-like saos-2 cells, we confirmed the effects of 3D scaffolds on cellular behaviors such as cell adhesion and proliferation. In summary, the 3D blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) scaffold was found to be suitable for human cancellous bone in terms of its the compressive strength, biocompatibility, and osteoconductivity. Thus, blending PCL and ${\beta}$-TCP could be a promising approach for fabricating 3D scaffolds for effective bone regeneration.