• Title/Summary/Keyword: and Route Optimization

Search Result 254, Processing Time 0.031 seconds

A Study on Place and Route of Time Driven Optimization in the FPGA (FPGA에서 시간구동 최적화의 배치.배선에 관한 연구)

  • Kim, Hyeonho;Lee, Yonghui;Cheonhee Yi
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.283-285
    • /
    • 2003
  • We have developed an optimization algorithm based formulation for performing efficient time driven simultaneous place and route for FPGAS. Field programmable gate array(FPGAS) provide of drastically reducing the turn-around time for digital ICs, with a relatively small degradation in performance. For a variety of application specific Integrated circuit application, where time-to-market is most critical and the performance requirement do not mandate a custom or semicustom approach, FPGAS are an increasingly popular alternative. This has prompted a substantial amount of specialized synthesis and layout research focused on maximizing density, minimizing delay, and minimizing design time.

  • PDF

A Study on the Route Optimization in MARNET Routing Protocol application Nested NEMO (MANET 라우팅 프로토콜을 적용한 중첩 이동 네트워크의 경로 최적화 방안 연구)

  • Jang, Sung-Jin;Park, Yong-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.137-138
    • /
    • 2006
  • NEMO(Network MObility) is a complex model of mobile network which refers to a forming of Nested Mobile Network by a moving transportation like vessel, bus, or a train which then moves a Mobile Node, or by a movement of a PAN(Personal Area Network). In a Nested NEMO, pinball routing is the primary obstacle as exemplified by the IPv6 environment. This paper will focus on improving such models as RRH, RBU+ and MANET Approach, that attempted to solve pinball routing by route optimization.

  • PDF

A Metaheuristic Approach Towards Enhancement of Network Lifetime in Wireless Sensor Networks

  • J. Samuel Manoharan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1276-1295
    • /
    • 2023
  • Sensor networks are now an essential aspect of wireless communication, especially with the introduction of new gadgets and protocols. Their ability to be deployed anywhere, especially where human presence is undesirable, makes them perfect choices for remote observation and control. Despite their vast range of applications from home to hostile territory monitoring, limited battery power remains a limiting factor in their efficacy. To analyze and transmit data, it requires intelligent use of available battery power. Several studies have established effective routing algorithms based on clustering. However, choosing optimal cluster heads and similarity measures for clustering significantly increases computing time and cost. This work proposes and implements a simple two-phase technique of route creation and maintenance to ensure route reliability by employing nature-inspired ant colony optimization followed by the fuzzy decision engine (FDE). Benchmark methods such as PSO, ACO and GWO are compared with the proposed HRCM's performance. The objective has been focused towards establishing the superiority of proposed work amongst existing optimization methods in a standalone configuration. An average of 15% improvement in energy consumption followed by 12% improvement in latency reduction is observed in proposed hybrid model over standalone optimization methods.

Variable Aggregation in the ILP Design of WDM Networks with Dedicated Protection

  • Tornatore, Massimo;Maier, Guido;Pattavina, Achille
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.419-427
    • /
    • 2007
  • In wavelength-division-multiplexing(WDM) networks a link failure may cause the failure of several high-bit-rate optical channels, thereby leading to large data loss. Recently, various protection and restoration mechanisms have been proposed to efficiently deal with this problem in mesh networks. Among them, dedicated path protection(DPP) is a promising candidate because of its ultra-fast restoration time and robustness. In this work we investigate the issue of planning and optimization of WDM networks with DPP. Integer linear programming(ILP), in particular, is one of the most common exact method to solve the design optimization problem for protected WDM networks. Traditional ILP formalizations to solve this problem rely on the classical flow or route formulation approaches, but both these approaches suffer from a excessively high computational burden. In this paper, we present a variable-aggregation method that has the ability of significantly reducing the complexity of the traditional flow formulation. We compare also the computational burden of flow formulation with variable aggregation both with the classical flow and route formulations. The comparison is carried out by applying the three alternative methods to the optimization of two case-study networks.

The Strategy for Interconnection Branch Line Construction used Optimization Program (최적화 기법을 적용한 효율적인 철도 연결선 구축 전략)

  • Kim, Yong-seok;Kim, Sigon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.853-858
    • /
    • 2019
  • One of the methods which can enhance the efficiency of railroad network is construction of interconnection branch line for several route to share one railway. In Korea, this method already has been implemented or excuted as project level. This study suggests a network design model and a solution algorithm to choice most proper site to construction it and determine the priority of branch lines which can be considered in planning level, not project level. The model is a non-linear optimization program which minimize total cost-construction cost, operating cost and passengers' travel cost. The decision variables are a binary variable to explain whether construction or not and its direction and a integer variable of the frequencies of travel routes. The solution algorithm-problem solution and route choice and also the result of implementation for example network are suggested. This result can be more advanced after application in real network and calibration of parameters.

Route Optimization Scheme in Nested NEMO Environment based on Prefix Delegation (프리픽스 할당에 기반한 중첩된 NEMO 환경에서의 경로최적화 기법)

  • Rho, Kyung-Taeg;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.95-103
    • /
    • 2008
  • The Network Mobility (NEMO) basic support protocol extends the operation of Mobile IPv6 to provide uninterrupted Internet connectivity to the communicating nodes of mobile networks. The protocol is not efficient to offer delays in data delivery and higher overheads in the case of nested mobile networks because it uses fairly sub-optimal routing and multiple encapsulation of data packets. In this paper, our scheme combining Hierarchical Mobile IPv6 (HMIPv6) functionality and Hierarchical Prefix Delegation (HPD) protocol for IPv6, which provide more effective route optimization and reduce packet header overhead and the burden of location registration for handoff. The scheme also uses hierarchical mobile network prefix (HMNP) assignment and tree-based routing mechanism to allocate the location address of mobile network nodes (MNNs) and support micro-mobility and intra-domain data communication. The performance is evaluated using NS-2.

  • PDF

Authenticated Route Optimization Protocol for Network Mobility Support (네트워크 이동성 지원을 위한 인증된 경로 최적화 프로토콜)

  • Koo, Jung-Doo;Lee, Gi-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.781-787
    • /
    • 2007
  • Network Mobility (NEMO) basic support protocol doesn't execute the process of route optimization and has not presented the particular security mechanism in other blocks except hi-directional tunnel between Mobile Router (MR) and its Home Agent (HA). Therefore in this paper we process secure route optimization courses through authenticated binding update protocol between MR and its Correspondent Node (CN) and the protocol of the competency of mandate between MR and its Mobile Network Node (MNN); its block also uses an bi-directional tunnel as the block between MR and its HA. The address of each node are generated by the way of Cryptographically Generated Address (CGA) for proving the ownership of address. Finally we analyze the robustness of proposed protocol using security requirements of MIPv6 and existing attacks and the efficiency of this protocol using the connectivity recovery and end-to-end packet transmission delay time.

  • PDF

A Route Optimization Scheme for Heterogeneous Nested Mobile Networks (혼재된 중첩 이동 네트워크에서의 라우팅 최적화 기법)

  • Cho, Ho-Sik;Kwon, Tae-Kyoung;Choi, Yang-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2B
    • /
    • pp.82-89
    • /
    • 2008
  • Mobile IP is the basic solution to provide host mobility, whereas network mobility refers to the concept of collective mobility of a set of nodes. In a network mobility scenario, mobile networks can be nested in a hierarchical form. That situation is referred to a nested mobile network Nested mobile networks exhibit the pinball routing problem, which becomes worse in proportion to the number of nested levels in the hierarchy. In this paper, we propose a routing optimization scheme having backward compatibility to the basic network mobility protocol and concerning heterogeneity of nested mobile network, also we perform comparison and analysis of proposed schemes.

Efficient Route Determination Technique in LBS System

  • Kim, Sung-Soo;Kim, Kwang-Soo;Kim, Jae-Chul;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.843-845
    • /
    • 2003
  • Shortest Path Problems are among the most studied network flow optimization problems, with interesting applications in various fields. One such field is the route determination service, where various kinds of shortest path problems need to be solved in location-based service. Our research aim is to propose a route technique in real-time locationbased service (LBS) environments according to user’s route preferences such as shortest, fastest, easiest and so on. Turn costs modeling and computation are important procedures in route planning. There are major two kinds of cost parameters in route planning. One is static cost parameter which can be pre-computed such as distance and number of traffic-lane. The other is dynamic cost parameter which can be computed in run-time such as number of turns and risk of congestion. In this paper, we propose a new cost modeling method for turn costs which are traditionally attached to edges in a graph. Our proposed route determination technique also has an advantage that can provide service interoperability by implementing XML web service for the OpenLS route determination service specification. In addition to, describing the details of our shortest path algorithms, we present a location-based service system by using proposed routing algorithms.

  • PDF

A Study on Efficient Handover Scheme using Pre-authentication and Route Optimization in PMIPv6 (PMIPv6에서 사전 인증 기법과 경로 최적화를 이용한 효율적인 핸드오버 기법에 관한 연구)

  • Kim, Seong-Chul;Moon, Il-Young;Cho, Sung-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1117-1124
    • /
    • 2010
  • PMIPv6 is a network-based mobility support scheme, proposed and standardized by NetLMM WG of IETF. It is proposed to solve problems of conventional mobility schemes, and to improve inefficiency of those. The standard document describes network components and detailed procedures to provide mobility to MN. But it describes only a handover procedure between MAGs, not between LMAs. In order to support seamless connectivity of MN efficiently, a handover procedure between LMAs is necessary. The proposed scheme in this paper utilizes a route optimization procedure to prevent inefficiency of inter-LMA tunneling scheme. At the same time, the proposed scheme utilizes a pre-authentication scheme to reduce handover latency. According to the result of performance evaluations, the proposed scheme greatly reduces handover latency, compared to conventional mobility support schemes.