• Title/Summary/Keyword: and K-means algorithm

Search Result 1,325, Processing Time 0.025 seconds

Spatio-temporal Denoising Algorithm base on Nonlocal Means (비지역적 평균 기반 시공간 잡음 제거 알고리즘)

  • Park, Sang-Wook;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.24-31
    • /
    • 2011
  • This paper proposes spatio-temporal denoising algorithm based on nonlocal means. Though the conventional denoising algorithms based on nonlocal means have good performance in noise removal, it is difficult to implement them into the hardware system due to much computational load and the need for several frame buffers. Therefore we adopted infinite impulse response temporal noise reduction algorithm in the proposed algorithm. Proposed algorithm shows less artificial denoised result in the motionless region. In the motion region, spatial filter based on efficiently improved nonlocal means algorithm conduct noise removal with less motion blur. Experimental results including comparisons with conventional algorithms for various noise levels and test images show the proposed algorithm has a good performance in both visual and quantitative criteria.

K-means Clustering using Grid-based Representatives

  • Park, Hee-Chang;Lee, Sun-Myung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.759-768
    • /
    • 2005
  • K-means clustering has been widely used in many applications, such that pattern analysis, data analysis, market research and so on. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters, because it is more primitive and explorative. In this paper we propose a new method of k-means clustering using the grid-based representative value(arithmetic and trimmed mean) for sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

Blind Channel Estimation through Clustering in Backscatter Communication Systems (후방산란 통신시스템에서 군집화를 통한 블라인드 채널 추정)

  • Kim, Soo-Hyun;Lee, Donggu;Sun, Young-Ghyu;Sim, Issac;Hwang, Yu-Min;Shin, Yoan;Kim, Dong-In;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.81-86
    • /
    • 2020
  • Ambient backscatter communication has a drawback in which the transmission power is limited because the data is transmitted using the ambient RF signal. In order to improve transmission efficiency between transceiver, a channel estimator capable of estimating channel state at a receiver is needed. In this paper, we consider the K-means algorithm to improve the performance of the channel estimator based on EM algorithm. The simulation uses MSE as a performance parameter to verify the performance of the proposed channel estimator. The initial value setting through K-means shows improved performance compared to the channel estimation method using the general EM algorithm.

Differential Evolution with Multi-strategies based Soft Island Model

  • Tan, Xujie;Shin, Seong-Yoon
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.261-266
    • /
    • 2019
  • Differential evolution (DE) is an uncomplicated and serviceable developmental algorithm. Nevertheless, its execution depends on strategies and regulating structures. The combination of several strategies between subpopulations helps to stabilize the probing on DE. In this paper, we propose a unique k-mean soft island model DE(KSDE) algorithm which maintains population diversity through soft island model (SIM). A combination of various approaches, called KSDE, intended for migrating the subpopulation information through SIM is developed in this study. First, the population is divided into k subpopulations using the k-means clustering algorithm. Second, the mutation pattern is singled randomly from a strategy pool. Third, the subpopulation information is migrated using SIM. The performance of KSDE was analyzed using 13 benchmark indices and compared with those of high-technology DE variants. The results demonstrate the efficiency and suitability of the KSDE system, and confirm that KSDE is a cost-effective algorithm compared with four other DE algorithms.

VS-FCM: Validity-guided Spatial Fuzzy c-Means Clustering for Image Segmentation

  • Kang, Bo-Yeong;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.89-93
    • /
    • 2010
  • In this paper a new fuzzy clustering approach to the color clustering problem has been proposed. To deal with the limitations of the traditional FCM algorithm, we propose a spatial homogeneity-based FCM algorithm. Moreover, the cluster validity index is employed to automatically determine the number of clusters for a given image. We refer to this method as VS-FCM algorithm. The effectiveness of the proposed method is demonstrated through various clustering examples.

Nonlinear Characteristics of Fuzzy Scatter Partition-Based Fuzzy Inference System

  • Park, Keon-Jun;Huang, Wei;Yu, C.;Kim, Yong K.
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.12-17
    • /
    • 2013
  • This paper introduces the fuzzy scatter partition-based fuzzy inference system to construct the model for nonlinear process to analyze nonlinear characteristics. The fuzzy rules of fuzzy inference systems are generated by partitioning the input space in the scatter form using Fuzzy C-Means (FCM) clustering algorithm. The premise parameters of the rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is represented in the form of polynomial functions and the parameters of the consequence part are estimated by least square errors. The proposed model is evaluated with the performance using the data widely used in nonlinear process. Finally, this paper shows that the proposed model has the good result for high-dimension nonlinear process.

Adaptive Non-Local Means Denoising Algorithm Using Down-Scaled Images (다운 스케일 영상을 이용한 적응적인 비국부 평균 노이즈 제거 방식)

  • Nguyen, Tuan-Anh;Kim, Dong Young;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.55-57
    • /
    • 2015
  • This paper presents an adaptive non-local means denoising algorithm using down-scaled images. This work provides a method to reduce artifacts and information loss around context region by increasing the number of similar patches for high activity region with down-scaled images. Experimental results demonstrate that the proposed algorithm outperforms the non-local means algorithm more than 1.5 (dB).

Improved Nonlocal Means Algorithm for Image Denoising (영상 잡음 제거를 위해 개선된 비지역적 평균 알고리즘)

  • Park, Sang-Wook;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.46-53
    • /
    • 2011
  • Nonlocal means denoising algorithm is one of the most widely used denoising algorithm. Because it performs well, and the theoretic idea is intuitive and simple. However the conventional nonlocal means algorithm has still some problems such as noise remaining in the denoised flat region and blurring artifacts in the denoised edge and pattern region. Thus many improved algorithms based on nonlocal means have been proposed. In this paper, we proposed new improved nonlocal means denoising algorithm by weight update through weights sorting and newly defined threshold. Updated weights can make weights more refined and definite, and denoising is possible without that artifacts. Experimental results including comparisons with conventional algorithms for various noise levels and test images show the proposed algorithm has a good performance in both visual and quantitative criteria.

XML Document Clustering Technique by K-means algorithm through PCA (주성분 분석의 K 평균 알고리즘을 통한 XML 문서 군집화 기법)

  • Kim, Woo-Saeng
    • The KIPS Transactions:PartD
    • /
    • v.18D no.5
    • /
    • pp.339-342
    • /
    • 2011
  • Recently, researches are studied in developing efficient techniques for accessing, querying, and storing XML documents which are frequently used in the Internet. In this paper, we propose a new method to cluster XML documents efficiently. We use a K-means algorithm with a Principal Component Analysis(PCA) to cluster XML documents after they are represented by vectors in the feature vector space by transferring them as names and levels of the elements of the corresponding trees. The experiment shows that our proposed method has a good result.

An Improved K-means Document Clustering using Concept Vectors

  • Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.853-861
    • /
    • 2003
  • An improved K-means document clustering method has been presented, where a concept vector is manipulated for each cluster on the basis of cosine similarity of text documents. The concept vectors are unit vectors that have been normalized on the n-dimensional sphere. Because the standard K-means method is sensitive to initial starting condition, our improvement focused on starting condition for estimating the modes of a distribution. The improved K-means clustering algorithm has been applied to a set of text documents, called Classic3, to test and prove efficiency and correctness of clustering result, and showed 7% improvements in its worst case.

  • PDF