• Title/Summary/Keyword: and 3-D finite element method

Search Result 1,323, Processing Time 0.034 seconds

A new numerical modelling for evaluating the stress intensity factors in 3-D fracture analysis

  • Cao, Zongjie;Liu, Yongyu
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.321-336
    • /
    • 2012
  • As an improvement on the isoparametric element method, the derivation presented in this paper is close to that done by Wang (1990) for the 2-D finite element. We extend this idea to solve 3-D crack problems in this paper. A new displacement modelling is constructed with local solutions of three-dimensional cracks and a quasi-compatible isoparametric element for three-dimensional fracture mechanics analysis is presented. The stress intensity factors can be solved directly by means of the present method without any post-processing. A new method for calculating the stress intensity factors of three-dimensional cracks with complex geometries and loads is obtained. Numerical examples are given to demonstrate the validity of the present method. The accuracy of the results obtained by the proposed element is demonstrated by solving several crack problems. The results illustrate that this method not only saves much calculating time but also increases the accuracy of solutions. Because this quasi-compatible finite element of 3-D cracks contains any singularities and easily meets the requirement of compatibility, it can be easily implemented and incorporated into existing finite element codes.

Prediction of Roll Force Profile in Cold Rolling - Part II : Application and Validation (냉간 압연에서 압하력 분포 예측 - Part II : 적용 및 검증)

  • Nam, S.Y.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.197-202
    • /
    • 2019
  • This paper proposes a precise mathematical model for the prediction of the variation of the roll force across a strip in cold rolling. It further describes the deformation characteristics of the strip using a 3-D finite element method. The different features of hot rolling and cold rolling through a 3-D finite element method are shown. The predicted roll force profile and tension profile are verified through comparison with the prediction from a 3-D finite element method.

3D Shape Optimization of Electromagnetic Device Using Design Sensitivity Analysis and Mesh Relocation Method (설계민감도해석과 요소망 변형법을 이용한 전자소자의 3차원 형상최적화)

  • ;Yao Yingying
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.307-314
    • /
    • 2003
  • This paper presents a 3D shape optimization algorithm for electromagnetic devices using the design sensitivity analysis with finite element method. The structural deformation analysis based on the deformation theory of the elastic body under stress is used for mesh renewing. The design sensitivity and adjoint variable formulae are derived for the 3D finite element method with edge element. The results of sensitivity analysis are used as the input data of the structural analysis to calculate the relocation of the nodal points. This method makes it possible that the new mesh of analysis region can be obtained from the initial mesh without regeneration. The proposed algorithm is applied to the shape optimization of 3D electromagnet pole to net a uniform flux density at the target region.

Large displacement geometrically nonlinear finite element analysis of 3D Timoshenko fiber beam element

  • Hu, Zhengzhou;Wu, Minger
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.601-625
    • /
    • 2014
  • Based on continuum mechanics and the principle of virtual displacements, incremental total Lagrangian formulation (T.L.) and incremental updated Lagrangian formulation (U.L.) were presented. Both T.L. and U.L. considered the large displacement stiffness matrix, which was modified to be symmetrical matrix. According to the incremental updated Lagrangian formulation, small strain, large displacement, finite rotation of three dimensional Timoshenko fiber beam element tangent stiffness matrix was developed. Considering large displacement and finite rotation, a new type of tangent stiffness matrix of the beam element was developed. According to the basic assumption of plane section, the displacement field of an arbitrary fiber was presented in terms of nodal displacement of centroid of cross-area. In addition, shear deformation effect was taken account. Furthermore, a nonlinear finite element method program has been developed and several examples were tested to demonstrate the accuracy and generality of the three dimensional beam element.

Analysis of PSC Box Girder Anchorage Zone using FEM and 2D SUB-3D STM Approach (유한요소법 및 유사 3 차원 스트릿-타이 모델 방법을 이용한 PSC 박스거더 정착부의 해석)

  • Yun, Young-Mook;Kim, Seung-Eock;Oh, Jin-Woo;Park, Jung-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.113-129
    • /
    • 2000
  • This study evaluates the behavior and strength of an anchorage zone of the prestressed concrete box girder bridge on the Kyungboo highway railroad using the 2D SUB-3D STM approach and a linear elastic finite element analysis. The 2D SUB-3D STM approach utilizes several two-dimensional sub strut-tie models that represent the compressive and tensile stress flows of each projected plane of the three-dimensional structural concrete in the selection of a three dimensional strut-tie model, evaluation of the effective strengths of the concrete struts, and verification of the geometric compatibility condition and bearing capacity of the critical nodal zones in the selected three-dimensional strut-tie model. The finite element analysis uses an 8-node brick element and the longitudinal prestressing force is considered as the equivalent nodal force. Analysis results show that the 2D SUB-3D STM approach and linear elastic finite element method can be effectively applied to the analysis and design of three-dimensional structural concrete including a prestressed concrete box girder anchorage zone.

  • PDF

Transient heat transfer of unidirectional (1D) and multidirectional (2D/3D) functionally graded panels

  • Samarjeet Kumar;Vishesh Ranjan Kar
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.587-602
    • /
    • 2023
  • This article presents the numerical modelling of transient heat transfer in highly heterogeneous composite materials where the thermal conductivity, specific heat and density are assumed to be directional-dependent. This article uses a coupled finite element-finite difference scheme to perform the transient heat transfer analysis of unidirectional (1D) and multidirectional (2D/3D) functionally graded composite panels. Here, 1D/2D/3D functionally graded structures are subjected to nonuniform heat source and inhomogeneous boundary conditions. Here, the multidirectional functionally graded materials are modelled by varying material properties in individual or in-combination of spatial directions. Here, fully spatial-dependent material properties are evaluated using Voigt's micromechanics scheme via multivariable power-law functions. The weak form is obtained through the Galerkin method and solved further via the element-space and time-step discretisation through the 2D-isoparametric finite element and the implicit backward finite difference schemes, respectively. The present model is verified by comparing it with the previously reported results and the commercially available finite element tool. The numerous illustrations confirm the significance of boundary conditions and material heterogeneity on the transient temperature responses of 1D/2D/3D functionally graded panels.

A Study on the Practical Finite Element Modeling Method for Ring Rolling (환상압연 공정의 실용적 모델링 방법에 관한 연구)

  • Lee, D.-K.;Kim, E.-Z.;Lee, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.161-166
    • /
    • 2015
  • The finite element method has been widely used in the analysis of ring rolling. For ring rolling it requires a high computational expense due to the non-steady state material flow characteristics of the process. The high computational expense causes the finite element analysis to be impractical for industrial applications. In the current study, we aim to develop a practical implicit finite element modeling method for ring rolling. This method uses a step-wise steady state assumption and is called the “Stepped method”. The stepped method divides the whole process time of unsteady-state flow model into a finite number of steady-state models. It then solves the process at several specific time steps until convergence is reached. In order to confirm the performance and validity of the newly proposed stepped method, the result from the stepped method were compared to the results from a Lagrangian finite element method and to results from experiments reported in the literature.

A Study on the T-branch Forming with 3-D Finite Element Method (3차원 유한요소법을 이용한 T형 가지관의 용접자리 성형 방법에 관한 연구)

  • 홍대훈;황두순;신동필;홍성인
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2001
  • In this study, the optimized initial hole shape for T-branch forming was proposed to obtain effective welding region. Design variables were determined by approximation analysis using volume constant condition. We performed 3D elastic-plastic FEM(Finite Element Method) analysis to simulate T-branch forming process. The variation of height and thickness of T-branch with various hole shapes was investigated. The optimized initial hole shape equation was obtained by using results for the numerical analysis.

  • PDF

A Study on Mesh Refinement for 3-D Adaptive Finite Element Method Using Tetrahedral Element (3차원 적응 유한요소법을 위한 사면체 요소세분에 관한 연구)

  • 김형석;정현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.921-927
    • /
    • 1990
  • This paper presents a mesh refinement scheme for 3-D adaptive finite element method. Firstly, the refinement of triangular meshes based on the bisection of triangles is discussed. And a new method to refine tetrahedral meshes employing the bisection method is presented. In two dimensional cases, it has been noted that all angles in the triangular meshes refined by the bisection method are greater than or equal to half the smallest angle in the original meshes. Through the examples where the newly proposed method is applied to three dimensional cases, it is shown that regarding the solid angles, the method gives nearly the same result as that in the two dimensional case. Accordingly, it can be concluded that the proposed method will be useful in the mesh refinements for 3-D adaptive finite element method.

  • PDF

On the Development of 3D Finite Element Method Package for CEMTool

  • Park, Jung-Hun;Ahn, Choon-Ki;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2410-2413
    • /
    • 2005
  • Finite element method (FEM) has been widely used as a useful numerical method that can analyze complex engineering problems in electro-magnetics, mechanics, and others. CEMTool, which is similar to MATLAB, is a command style design and analyzing package for scientific and technological algorithm and a matrix based computation language. In this paper, we present new 3D FEM package in CEMTool environment. In contrast to the existing CEMTool 2D FEM package and MATLAB PDE (Partial Differential Equation) Toolbox, our proposed 3D FEM package can deal with complex 3D models, not a cross-section of 3D models. In the pre-processor of 3D FEM package, a new 3D mesh generating algorithm can make information on 3D Delaunay tetrahedral mesh elements for analyses of 3D FEM problems. The solver of the 3D FEM package offers three methods for solving the linear algebraic matrix equation, i.e., Gauss-Jordan elimination solver, Band solver, and Skyline solver. The post-processor visualizes the results for 3D FEM problems such as the deformed position and the stress. Consequently, with our new 3D FEM toolbox, we can analyze more diverse engineering problems which the existing CEMTool 2D FEM package or MATLAB PDE Toolbox can not solve.

  • PDF