• Title/Summary/Keyword: anchorage method

Search Result 200, Processing Time 0.021 seconds

The combined use of computer-guided, minimally invasive, flapless corticotomy and clear aligners as a novel approach to moderate crowding: A case report

  • Cassetta, Michele;Altieri, Federica;Pandolfi, Stefano;Giansanti, Matteo
    • The korean journal of orthodontics
    • /
    • v.47 no.2
    • /
    • pp.130-141
    • /
    • 2017
  • The aim of this case report was to describe an innovative orthodontic treatment method that combined surgical and orthodontic techniques. The novel method was used to achieve a positive result in a case of moderate crowding by employing a computer-guided piezocision procedure followed by the use of clear aligners. A 23-year-old woman had a malocclusion with moderate crowding. Her periodontal indices, oral health-related quality of life (OHRQoL), and treatment time were evaluated. The treatment included interproximal corticotomy cuts extending through the entire thickness of the cortical layer, without a full-thickness flap reflection. This was achieved with a three-dimensionally printed surgical guide using computer-aided design and computer-aided manufacturing. Orthodontic force was applied to the teeth immediately after surgery by using clear appliances for better control of tooth movement. The total treatment time was 8 months. The periodontal indices improved after crowding correction, but the oral health impact profile showed a slight deterioration of OHRQoL during the 3 days following surgery. At the 2-year retention follow-up, the stability of treatment was excellent. The reduction in surgical time and patient discomfort, increased periodontal safety and patient acceptability, and accurate control of orthodontic movement without the risk of losing anchorage may encourage the use of this combined technique in appropriate cases.

Comparative Study on Seismic Design of Soil-Reinforced Segmental Retaining Walls (블록식 보강토 옹벽의 내진설계에 관한 비교연구)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.51-61
    • /
    • 2000
  • This paper reviews fundamentals of a pseudo-static seismic design/analysis method for soil-reinforced segmental retaining walls. A comparative study on NCMA and FHWA seismic design guidelines, which are one of the most well known design guidelines for mechanically stabilized earth walls, was also performed. The results demonstrate that there exist significant discrepancies in the results of external stability analysis despite the same calculation model used in the two guidelines, due primarily to different seismic coefficient selection criteria. It is also demonstrated that the internal stability calculation model for NCMA guideline tends to yield larger seismic reinforcement force in the shallower reinforcement layers, resulting in an increased number of reinforcement layers at the top of reinforced wall and increased reinforcement lengths to ensure adequate anchorage capacity. The internal stability calculation model adopted by FHWA guideline, however, leads to redistribution of dynamic force to the lower reinforcement layers and thus results n an opposite trend of NCMA guideline. Findings from this study clearly demonstrate a need for more in-depth studies to develop a generally acceptable design/analysis method.

  • PDF

Composition Method and Character for Beam String Structure in Structural Planning (구조계획에 있어 들림형 보구조의 특성과 구성방식)

  • Lee, Ju-Na;Park, Sun-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.111-121
    • /
    • 2006
  • Beam String Structure is a structure system that is composed with beam, strut and string, and the structural capacity of this structure system is enhanced by introducing prestress force in string and controling the stress and deformation of beam. Researching on the established studies and examples, character and composition methods of Beam String Structure was investigated. At the result, It was examined that the design elements of the system are shape and rise of beam, sag of string, plan arrangement and the composition and number of strut, in addition, detailed composition methods of the design elements were represented. Also, it was showed that the method to form the individual mechanism against additional load can be employed in order to reduce stress of Beam String Structure under the heavy additional load.

  • PDF

A Study on the Limit of Anchor Dragging for Ship at Anchor( I ) (묘박 중인 선박의 주묘 한계에 관한 연구( I ))

  • Lee, Yun-Sok;Jung, Yun-Chul;Kim, Se-Won;Yun, Jong-Hwui;Bae, Suk-Han;Nguyen, Phung-Hung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.165-171
    • /
    • 2005
  • When typhoon approaches, ship normally drops her anchor at proper anchorage for sheltering. If an anchoring ship is under the influence of typhoon, she can keep her position when the external force and counter force is balanced. Where, external force is induced by wind, wave and tidal currents while counter force is induced by holding power of anchor/chain and thrust force of main engine. In this study, authors presented a method to analyze theoretically the limit of external force for the ship to keep her position without being dragged and, to check the validity of method, applied this to the ship which had been anchored in Jinhae Bay when the typhoon MAEMI passed on September 2003.

  • PDF

A CASE REPORT ABOUT CORRECTION OF IMPLANT POSITION AT HORIZONTAL PLANE AFTER CORTICOTOMY (피질골 절단술을 이용한 수평면에서의 임플란트의 위치 교정에 대한 치험례)

  • Choi, Bin;Oh, Hae-Soo;Kim, Jin-Chul;Kil, Yong-Gab;Kim, Kyoung-Soo;Kim, Jwa-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.3
    • /
    • pp.255-261
    • /
    • 2007
  • Preface: Dental implant is important method that may solve the mastication, occlusion, esthetic, temporomandibular joint, and psychologic problem in oral and maxillofacial surgery. It is ideal that all of the implant are well positioned by adequate technique. By the way it‘s not always possible because of some anatomic, physiologic factor. In this case, If the implant can be moved to adequate position, it may be possible more esthetically and implanted patients more satisfied, but the majority of Implantists and orthodontists have thought that it is not possible. However, Implant, in fact, can be moved. and thus we can overcome the limit of implantation more. The aim of the present study was to evaluate the possibility of implant movement after corticotomy. Case report: Patient missed the upper right first molar. and implantation was done after completion of socket healing. We wait six months for osseointegration. Then, corticotomy was done under local anesthesia and close coil was used for orthodontic force. After traction during 3 weeks, we find the change of implant position at horizontal plane. we can not see the degenerative change on adjacent structure and tracted implant. there is a clinical mobility on upper right second premolar that used for anchorage but it subside spontaneously at the timing of prosthetic restoration without additional treatment. Discussion: As we could have some knowledge with this experiment, we report the case of implant movement after corticotomy and suggest a method about more esthetic implant treatment with a review of literature.

Estimation of Geometric Error Sources of Suspension Bridge using Survey Data (측량 데이터를 이용한 현수교의 형상오차 원인 추정)

  • Park, Yong Myung;Cho, Hyun Jun;Cheung, Jin Hwan;Kim, Nam Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.313-321
    • /
    • 2007
  • The study discussed in this paper presents a method of estimating sources of geometric errors in suspension bridges in use, based on geometric survey data. A geometric error is defined as the difference between the survey data and the design geometry of a main cable. It is assumed that the geometric error in a suspension bridge is caused by the variations in the weight of the stiffening girder and the deformation of the anchorage foundations due to the creep of soil. The variations in the girder weight and the deformation of the foundation were estimated by constructing a matrix of factors that affect suspension bridges due to the variations. To check the validity of the proposed method, it was applied to the Kwang-An Bridge, and the sources of geometric errors in the bridge were estimated using the survey data.

A Study on the Limit of Anchor Dragging for Ship at Anchor( I ) (묘박 중인 선박의 주묘 한계에 관한 연구( I ))

  • Lee Yun-Sok;Jung Yun-Chul;Kim Se-Won;Yun Jong-Hwui;Bae Suk-Han;Nguyen Phung-Hung
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.357-363
    • /
    • 2005
  • When typhoon approaches, ship normally drops her anchor at proper anchorage for sheltering. If an anchored ship is under the influence of typhoon, she can keep her position when the external force and counter force is balanced. Where, external force is induced by wind, wave and tidal currents while counter force is induced by holding power of anchor/chain and thrust force of main engine. In this study, authors presented a method to analyze theoretically the limit of external force for the ship to keep her position without being dragged and, to check the validity of the method, applied this to the ship which had been anchored in Jinhae Bay when the typhoon MAEMI passed on September 2003.

Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results

  • Cengiz, Ibrahim Fatih;Oliveira, Joaquim Miguel;Reis, Rui L.
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.279-289
    • /
    • 2018
  • Background: Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. Main body: This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. Conclusion: Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.

The effects of different pilot-drilling methods on the mechanical stability of a mini-implant system at placement and removal: a preliminary study (인조골에서 식립 방법이 교정용 미니 임플란트의 기계적 안정성에 미치는 영향에 대한 예비연구)

  • Cho, Il-Sik;Choo, Hye-Ran;Kim, Seong-Kyun;Shin, Yun-Seob;Kim, Duck-Su;Kim, Seong-Hun;Chung, Kyu-Rhim;Huang, John C.
    • The korean journal of orthodontics
    • /
    • v.41 no.5
    • /
    • pp.354-360
    • /
    • 2011
  • Objective: To investigate the effects of different pilot-drilling methods on the biomechanical stability of self-tapping mini-implant systems at the time of placement in and removal from artificial bone blocks. Methods: Two types of artificial bone blocks (2-mm and 4-mm, 102-pounds per cubic foot [102-PCF] polyurethane foam layered over 100-mm, 40-PCF polyurethane foam) were custom-fabricated. Eight mini-implants were placed using the conventional motor-driven pilot-drilling method and another 8 mini-implants were placed using a novel manual pilot-drilling method (using a manual drill) within each of the 2-mm and 4-mm layered blocks. The maximum torque values at insertion and removal of the mini-implants were measured, and the total energy was calculated. The data were statistically analyzed using linear regression analysis. Results: The maximum insertion torque was similar regardless of block thickness or pilot-drilling method. Regardless of the pilot-drilling method, the maximum removal torque for the 4-mm block was statistically higher than that for the 2-mm block. For a given block, the total energy at both insertion and removal of the mini-implant for the manual pilot-drilling method were statistically higher than those for the motor-driven pilot-drilling method. Further, the total energies at removal for the 2-mm block was higher than that for the 4-mm block, but the energies at insertion were not influenced by the type of bone blocks. Conclusions: During the insertion and removal of mini-implants in artificial bone blocks, the effect of the manual pilot-drilling method on energy usage was similar to that of the conventional, motor-driven pilot-drilling method.

Experimental Study on the Strengthening Effect of External Prestressing Method Considering Deterioration (구조물 노후도를 반영한 외부긴장 보강 효과에 관한 실험적 연구)

  • Kim, Sang-Hyun;Jung, Woo-Tai;Kang, Jae-Yoon;Park, Hee-Beom;Park, Jong-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Concrete structures gradually age due to deterioration of materials or excess loads and environmental factors, and their performance decreases, affecting the usability and safety of structures. Although external tension construction methods are widely used among the reinforcement methods of old bridges, it is insufficient to identify the effects and effects of reinforcement depending on the level of aging. Therefore, in this study, a four-point loading experiment was conducted on the subject with the non-reinforced and external tensioning method to confirm the reinforcement effect of the external tensioning method, assuming the aging of the structure as a reduction in the compressive strength and tensile reinforcement of concrete, to analyze the behavior of the reinforcement and confirm the reinforcement effect. As a result of the experiment, it was difficult to identify the amount of reinforcement in the extreme condition due to early elimination of the anchorage. Therefore, compliance with the regulations on anchor bolts is required when applying the external tension reinforcement method. Crack load and yield load increased depending on whether external tension was reinforced, but before the crack, the stiffness before and after reinforcement was similar, making it difficult to confirm the reinforcement effect.