• 제목/요약/키워드: anchor drop test

검색결과 3건 처리시간 0.022초

Centrifuge modeling of dynamically penetrating anchors in sand and clay

  • An, Xiaoyu;Wang, Fei;Liang, Chao;Liu, Run
    • Geomechanics and Engineering
    • /
    • 제30권6호
    • /
    • pp.539-549
    • /
    • 2022
  • Accidental anchor drop can cause disturbances to seabed materials and pose significant threats to the safety and serviceability of submarine structures such as pipelines. In this study, a series of anchor drop tests was carried out to investigate the penetration mechanism of a Hall anchor in sand and clay. A special anchor drop apparatus was designed to model the inflight drop of a Hall anchor. Results indicate that Coriolis acceleration was the primary cause of large horizontal offsets in sand, and earth gravity had negligible impact on the lateral movement of dropped anchors. The indued final horizontal offset was shown to increase with the elevated drop height of an anchor, and the existence of water can slow down the landing velocity of an anchor. It is also observed that water conditions had a significant effect on the influence zone caused by anchors. The vertical influence depth was over 5 m, and the influence radius was more than 3 m if the anchor had a drop height of 25 m in dry sand. In comparison, the vertical influence depth and radius reduced to less than 3 m and 2 m, respectively, when the anchor was released from 10 m height and fell into the seabed with a water depth of 15 m. It is also found that the dynamically penetrating anchors could significantly influence the earth pressure in clay. There is a non-linear increase in the measured penetration depth with kinematic energy, and the resulted maximum earth pressure increased dramatically with an increase in kinematic energy. Results from centrifuge model tests in this study provide useful insights into the penetration mechanism of a dropped anchor, which provides valuable data for design and planning of future submarine structures.

Collision-Damage Analysis of a Floating Offshore Wind Turbine Considering Ship-Collision Risk

  • Young-Jae Yu;Sang-Hyun Park;Sang-Rai Cho
    • 한국해양공학회지
    • /
    • 제38권3호
    • /
    • pp.124-136
    • /
    • 2024
  • As the number of offshore wind-power installations increases, collision accidents with vessels occur more frequently. This study investigates the risk of collision damage with operating vessels that may occur during the operation of an offshore wind turbine. The floater used in the collision study is a 15 MW UMaine VolturnUS-S (semi-submersible type), and the colliding ships are selected as multi-purpose vessels, service operation vessels, or anchor-handling tug ships based on their operational purpose. Collision analysis is performed using ABAQUS and substantiation is performed via a drop impact test. The collision analyses are conducted by varying the ship velocity, displacement, collision angle, and ship shape. By applying this numerical model, the extent of damage and deformation of the collision area is confirmed. The analysis results show that a vessel with a bulbous bow can cause flooding, depending on the collision conditions. For damage caused by collision, various collision angles must be considered based on the internal stiffener arrangement. Additionally, the floater can be flooded with relatively small collision energy when the colliding vessel has a bulbous bow.

신호처리기법을 이용한 구조물의 동특성치 추정 (Estimation of Structural Dynamic Properties Using Signal Processing Techniques)

  • 정태영;김양한
    • 대한조선학회지
    • /
    • 제27권2호
    • /
    • pp.87-95
    • /
    • 1990
  • 본 논문에서는 충격시험에 의해 얻어진 구조물의 과도진동응답 신호로부터 구조물의 동특성치를 구하는 기존방법에 대하여 살펴보고 이들 기존 방법의 단점을 개선할 수 있는 방법으로 최대엔트로피방법(Maximum Entropy Method)과 최소자승 Prony법(Least Square Prony Method)를 도입하여 수치실험을 통한 성능시험을 수행하였다. 그리고 적용예로서 선박의 낙묘시험으로부터 얻은 시계열에 이들을 적용하여 그 결과 FFT법 결과와 비교하였다. 연구결과, 최대엔트로피방법은 구조물의 인접 고유진동수들이 가까이 있고 얻을 수 있는 동적응답 시계열의 data 길이가 짧을 때의 고유진동수 추정에 유용하나 감쇠비 산정에는 유용하지 못함이 밝혀졌다. 또한, 최소자승 Prony법은 과감쇠계의 고유진동수 및 감쇠비 추정에 유용하나 동적응답 시계열에 많은 잡음이 포함되어 있을 경우, 감쇠비 추정성능이 크게 저하되는 것으로 나타났다.

  • PDF