• Title/Summary/Keyword: analytical threshold

Search Result 172, Processing Time 0.02 seconds

Subthreshold Characteristics of Double Gate MOSFET for Gaussian Function Distribution (가우스함수의 형태에 따른 DGMOSFET의 문턱전압이하특성)

  • Jung, Hak-Kee;Han, Ji-Hyung;Lee, Jong-In;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.716-718
    • /
    • 2012
  • This paper have presented the change for subthreshold characteristics for double gate(DG) MOSFET based on scaling theory and the shape of Gaussian function. To obtain the analytical solution of Poisson's equation, Gaussian function been used as carrier distribution and consequently potential distributions have been analyzed closely for experimental results, and the subthreshold characteristics have been analyzed for the shape parameters of Gaussian function such as projected range and standard projected deviation. Since this potential model has been verified in the previous papers, we have used this model to analyze the subthreshold chatacteristics. The scaling theory is to sustain constant outputs for the change of device parameters. As a result to apply the scaling theory for DGMOSFET, we know the subthreshold characteristics have been greatly changed, and the change of threshold voltage is bigger relatively.

  • PDF

Temperature effect on seismic performance of CBFs equipped with SMA braces

  • Qiu, Canxing;Zhao, Xingnan
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.495-508
    • /
    • 2018
  • Shape memory alloys (SMAs) exhibit superelasticity given the ambient temperature is above the austenite finish temperature threshold, the magnitude of which significantly depends on the metal ingredients though. For the monocrystalline CuAlBe SMAs, their superelasticity was found being maintained even when the ambient temperature is down to $-40^{\circ}C$. Thus this makes such SMAs particularly favorable for outdoor seismic applications, such as the framed structures located in cold regions with substantial temperature oscillation. Due to the thermo-mechanical coupling mechanism, the hysteretic properties of SMAs vary with temperature change, primarily including altered material strength and different damping. Thus, this study adopted the monocrystalline CuAlBe SMAs as the kernel component of the SMA braces. To quantify the seismic response characteristics at various temperatures, a wide temperature range from -40 to $40^{\circ}C$ are considered. The middle temperature, $0^{\circ}C$, is artificially selected to be the reference temperature in the performance comparisons, as well the corresponding material properties are used in the seismic design procedure. Both single-degree-of-freedom systems and a six-story braced frame were numerically analyzed by subjecting them to a suite of earthquake ground motions corresponding to the design basis hazard level. To the frame structures, the analytical results show that temperature variation generates minor influence on deformation and energy demands, whereas low temperatures help to reduce acceleration demands. Further, attributed to the excellent superelasticity of the monocrystalline CuAlBe SMAs, the frames successfully maintain recentering capability without leaving residual deformation upon considered earthquakes, even when the temperature is down to $-40^{\circ}C$.

A Dry Friction Model to Realize Stick for Simulation of the System with Friction and Accuracy Verification of the Friction Model (마찰력이 작용하는 동적 시스템의 점착 구현을 위한 마찰모델 제안 및 정확성 검증)

  • Choi, Chan-Kyu;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.748-755
    • /
    • 2012
  • Friction causes self-excited vibration, stick-slip vibration and any other friction-induced phenomena. That kinds of vibrations cause chatter and squeal. In order to predict such vibrations accurately, employing an accurate friction model is very important because a dynamic behavior of a system with friction is dominantly governed by a friction model. A Coulomb friction model is the most widely known model. Coulomb friction model is useful model to obtain analytical solutions of the system with friction and the model gives relatively good simulation result. However, defining a friction force at a stick state in simulation is hard because of the characteristic itself and a Coulomb friction model is discontinuous function between a static and a dynamic friction coefficient. Therefore, applying the Coulomb friction model to a simulation is not appropriate. In order to resolve these problems, an approximated Coulomb friction model was developed using simple and continuous function. However, an approximated Coulomb friction model cannot realize stick. Therefore, an approximated Coulomb friction model cannot describe friction phenomena accurately. In order to analyze a friction phenomenon accurately, a friction model for a simulation was proposed in this paper. A proposed friction model realizes stick and gives reasonably good results compared to results obtained by the simulation employing an approximated Coulomb friction model. Accuracy of a proposed friction model was verified by comparing experimental results.

Movement of Conduction Path for Electron Distribution in Channel of Double Gate MOSFET (DGMOSFET에서 채널내 전자분포에 따른 전도중심의 이동)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.805-811
    • /
    • 2012
  • In this paper, movement of conduction path has been analyzed for electron distribution in the channel of double gate(DG) MOSFET. The analytical potential distribution model of Poisson equation, validated in previous researches, has been used to analyze transport characteristics. DGMOSFETs have the adventage to be able to reduce short channel effects due to improvement for controllability of current by two gate voltages. Since short channel effects have been occurred in subthreshold region including threshold region, the analysis of transport characteristics in subthreshold region is very important. Also transport characteristics have been influenced on the deviation of electron distribution and conduction path. In this study, the influence of electron distribution on conduction path has been analyzed according to intensity and distribution of doping and channel dimension.

Performance Analysis of an Adaptive Hybrid Search Code Acquisition Algorithm for DS-CDMA Systems (DS-CDMA 시스템을 위한 적응 혼합 검색형 동기획득 알고리즘의 성능 분석)

  • Park Hyung rae;Yang Yeon sil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.83-91
    • /
    • 2005
  • We analyze the performance of an adaptive hybrid search code acquisition algorithm for direct-sequence code division multiple access (DS-CDMA) systems under slowly-moving mobile environments. The code acquisition algorithm is designed to provide the desired feature of constant false alarm rate (CFAR) to cope with nonstationarity of the interference in CDMA forward links. An analytical expression for the mean acquisition time is first derived and the probabilities of detection, miss, and false alarm are then obtained for frequency-selective Rayleigh fading environments. The fading envelope of a received signal is assumed to be constant over the duration of post-detection integration (PDI), considering slow fading environments. Finally, the performance of the designed code acquisition algorithm shall be evaluated numerically to examine the effect of some design parameters such as the sub-window size, size of the PDI, decision threshold, and so on, considering cdma2000 environments.

Analysis of Conduction-Path Dependent Off-Current for Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 차단전류에 대한 전도중심 의존성 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.575-580
    • /
    • 2015
  • Asymmetric double gate(DG) MOSFET is a novel transistor to be able to reduce the short channel effects. This paper has analyzed a off current for conduction path of asymmetric DGMOSFET. The conduction path is a average distance from top gate the movement of carrier in channel happens, and a factor to change for oxide thickness of asymmetric DGMOSFET to be able to fabricate differently top and bottom gate oxide thickness, and influenced on off current for top gate voltage. As the conduction path is obtained and off current is calculated for top gate voltage, it is analyzed how conduction path influences on off current with parameters of oxide thickness and channel length. The analytical potential distribution of series form is derived from Poisson's equation to obtain off current. As a result, off current is greatly changed for conduction path, and we know threshold voltage and subthreshold swing are changed for this reasons.

Relation of Oxide Thickness and DIBL for Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET에서 산화막 두께와 DIBL의 관계)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.799-804
    • /
    • 2016
  • To analyze the phenomenon of drain induced barrier lowering(DIBL) for top and bottom gate oxide thickness of asymmetric double gate MOSFET, the deviation of threshold voltage is investigated for drain voltage to have an effect on barrier height. The asymmetric double gate MOSFET has the characteristic to be able to fabricate differently top and bottom gate oxide thickness. DIBL is, therefore, analyzed for the change of top and bottom gate oxide thickness in this study, using the analytical potential distribution derived from Poisson equation. As a results, DIBL is greatly influenced by top and bottom gate oxide thickness. DIBL is linearly decreased in case top and bottom gate oxide thickness become smaller. The relation of channel length and DIBL is nonlinear. Top gate oxide thickness more influenced on DIBL than bottom gate oxide thickness in the case of high doping concentration in channel.

Impact of Sensing Models on Probabilistic Blanket Coverage in Wireless Sensor Network (무선 센서 네트워크에서 Probabilistic Blanket Coverage에 대한 센싱 모델의 영향)

  • Pudasaini, Subodh;Kang, Moon-Soo;Shin, Seok-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.697-705
    • /
    • 2010
  • In Wireless Sensor Networks (WSNs), blanket (area) coverage analysis is generally carried to find the minimum number of active sensor nodes required to cover a monitoring interest area with the desired fractional coverage-threshold. Normally, the coverage analysis is performed using the stochastic geometry as a tool. The major component of such coverage analysis is the assumed sensing model. Hence, the accuracy of such analysis depends on the underlying assumption of the sensing model: how well the assumed sensing model characterizes the real sensing phenomenon. In this paper, we review the coverage analysis for different deterministic and probabilistic sensing models like Boolean and Shadow-fading model; and extend the analysis for Exponential and hybrid Boolean-Exponential model. From the analytical performance comparison, we demonstrate the redundancy (in terms of number of sensors) that could be resulted due to the coverage analysis based on the detection capability mal-characterizing sensing models.

Clean techniques for trace metal analysis in natural waters (자연수 중의 미량금속 분석을 위한 청결기술)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Cho, Sung-Rok;Park, Jun-Kun;Moon, Deok-Soo;Kim, Hyeon-Ju
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.43-49
    • /
    • 2007
  • The metals we are familiar with(Al, Ag, Au, Cu, Cd, Co, Fe, Ni, Pb, Zn, etc) are common elements and conservative pollutants. Although metals are often vital constituents of the metabolism of living organisms(trace elements}, a number of them are toxic if their concentration exceeds a certain threshold. It has long been recognized that measurements of trace metals in natural waters are often subject to large errors in terms of precision and accuracy. Since 1975 in US and European countries, seawater concentration of many trace metals have been shown to be factors of 10-1,000 lower than those previously accepted. Vertical profiles have been found to be consistent with known biological, physical and/or geochemical processes. These are resulted from major advances in analytical instrumentation and methodology for trace elements, and greater attention has been given to assuring the elimination of contamination during sampling, storage, and analysis.

  • PDF

Work Environments and Exposure to Hazardous Substances in Korean Tire Manufacturing

  • Lee, Na-Roo;Lee, Byung-Kyu;Jeong, Si-Jeong;Yi, Gwang-Yong;Shin, Jung-Ah
    • Safety and Health at Work
    • /
    • v.3 no.2
    • /
    • pp.130-139
    • /
    • 2012
  • Objectives: The purpose of this study is to evaluate the tire manufacturing work environments extensively and to identify workers' exposure to hazardous substances in various work processes. Methods: Personal air sampling was conducted to measure polycyclic aromatic hydrocarbons, carbon disulfide, 1,3-butadiene, styrene, methyl isobutyl ketone, methylcyclohexane, formaldehyde, sulfur dioxide, and rubber fume in tire manufacturing plants using the National Institute for Occupational Safety Health Manual of Analytical Methods. Noise, carbon monoxide, and heat stress exposure were evaluated using direct reading instruments. Past concentrations of rubber fume were assessed using regression analysis of total particulate data from 2003 to 2007, after identifying the correlation between the concentration of total particulate and rubber fume. Results: Workers were exposed to rubber fume that exceeded 0.6 mg/$m^3$, the maximum exposure limit of the UK, in curing and production management processes. Forty-seven percent of workers were exposed to noise levels exceeding 85 dBA. Workers in the production management process were exposed to $28.1^{\circ}C$ (wet bulb globe temperature value, WBGT value) even when the outdoor atmosphere was $2.7^{\circ}C$ (WBGT value). Exposures to other substances were below the limit of detection or under a tenth of the threshold limit values given by the American Conference of Governmental Industrial Hygienists. Conclusion: To better classify exposure groups and to improve work environments, examining closely at rubber fume components and temperature as risk indicators in tire manufacturing is recommended.