• 제목/요약/키워드: analytical series solution

검색결과 142건 처리시간 0.026초

A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates

  • Remil, Aicha;Benrahou, Kouider Halim;Draiche, Kada;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.325-337
    • /
    • 2019
  • In the present article, cross ply laminated composite plates are considered and a simple sinusoidal shear deformation model is tested for analyzing their flexural, stability and dynamic behaviors. The model contains only four unknown variables that are five in the first order shear deformation theory (FSDT) or other higher order models. The in-plane kinematic utilizes undetermined integral terms to quantitatively express the shear deformation influence. In the proposed theory, the conditions of zero shear stress are respected at bottom and top faces of plates without considering the shear correction coefficient. Equations of motion according to the proposed formulation are deduced by employing the virtual work principle in its dynamic version. The analytical solution is determined via double trigonometric series proposed by Navier. The stresses, displacements, natural frequencies and critical buckling forces computed using present method are compared with other published data where a good agreement between results is demonstrated.

Numerical simulation of 2-D fluid-structure interaction with a tightly coupled solver and establishment of the mooring model

  • Tsai, I-Chen;Li, Sing-Ya;Hsiao, Shih-Chun;Hsiao, Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.433-449
    • /
    • 2021
  • In this study, a newly enhanced Fluid-Structure Interaction (FSI) model which incorporates mooring lines was used to simulate a floating structure. The model has two parts: a Computational Fluid Dynamics (CFD) model and a mooring model. The open-source CFD OpenFOAM® v1712 toolbox was used in the present study, and the convergence criteria and relaxation method were added to the computational procedure used for the OpenFOAM multiphase flow solver, interDyMFoam. A newly enhanced, tightly coupled solver, CoupledinterDyMFoam, was used to decrease the artificial added mass effect, and the results were validated through a series of benchmark cases. The mooring model, based on the finite element method, was established in MATLAB® and was validated against a benchmark analytical elastic catenary solution and numerical results. Finally, a model which simulates a floating structure with mooring lines was successfully constructed by connecting the mooring model to CoupledinterDyMFoam.

FE model of electrical resistivity survey for mixed ground prediction ahead of a TBM tunnel face

  • Kang, Minkyu;Kim, Soojin;Lee, JunHo;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.301-310
    • /
    • 2022
  • Accurate prediction of mixed ground conditions ahead of a tunnel face is of vital importance for safe excavation using tunnel boring machines (TBMs). Previous studies have primarily focused on electrical resistivity surveys from the ground surface for geotechnical investigation. In this study, an FE (finite element) numerical model was developed to simulate electrical resistivity surveys for the prediction of risky mixed ground conditions in front of a tunnel face. The proposed FE model is validated by comparing with the apparent electrical resistivity values obtained from the analytical solution corresponding to a vertical fault on the ground surface (i.e., a simplified model). A series of parametric studies was performed with the FE model to analyze the effect of geological and sensor geometric conditions on the electrical resistivity survey. The parametric study revealed that the interface slope between two different ground formations affects the electrical resistivity measurements during TBM excavation. In addition, a large difference in electrical resistivity between two different ground formations represented the dramatic effect of the mixed ground conditions on the electrical resistivity values. The parametric studies of the electrode array showed that the proper selection of the electrode spacing and the location of the electrode array on the tunnel face of TBM is very important. Thus, it is concluded that the developed FE numerical model can successfully predict the presence of a mixed ground zone, which enables optimal management of potential risks.

두개의 수직 다공성 벽면을 가진 좁은 간격에서의 유체의 열적 불안정성 (Thermal Instability of Fluid in a Slot between Two Vertical Permeable Walls)

  • 손동연;유정열;이택식
    • 대한설비공학회지:설비저널
    • /
    • 제13권4호
    • /
    • pp.215-222
    • /
    • 1984
  • An analytical study on the thermal instability of fluid in a vertical solt between two permeable walls has been carried out using fast converging power series solution method. For given values of prandtl number Pr and permeability paramter ${\sigma}$, the critical Grashof number $Gr_c$ and the critical wave number ac are found as eigenvalues of the problem formulated by the stability equations and the appropriate boundary conditions which are derived on the basis of linear stability theory. In the case of ${\sigma}\;>\;10^4$, the results approach those of solid boundary case, but in the case of ${\sigma}\;<\;10^3$, the decrease of $Gr_c$ and $a_c$become more prominent. In other words, the permeable walls cause the flow to be more unstable than the solid walls. This is considered to be due to the slip of the fluid on the wail, which decrease the friction force.

  • PDF

Avantor® ACE® UltraCore HPLC/UHPLC 칼럼 가이드 (Avantor® ACE® UltraCore HPLC and UHPLC Columns)

  • Peter Bridge;Ian Phillips;Gemma Lo;Cassandra Rusher
    • FOCUS: LIFE SCIENCE
    • /
    • 제1호
    • /
    • pp.4.1-4.15
    • /
    • 2024
  • The Avantor® ACE® UltraCore series encompasses High Performance Liquid Chromatography (HPLC) and Ultra High Performance Liquid Chromatography (UHPLC) columns designed to deliver high throughput and high-efficiency ultra-fast separations. Utilizing ultra-inert solid-core silica particles with monodisperse particle distribution, these columns combine the high efficiency of UHPLC with the operability of HPLC instrumentation, yielding lower backpressure and high-resolution separations suitable for a broad spectrum of analytes. The Avantor® ACE® UltraCore range includes three primary product types: • UltraCore BIO: Designed for large biomolecules (≥5 kDa), these columns offer exceptional performance in separating biologically derived compounds. • UltraCore: Ideal for standard small organic molecules, providing rapid separations for both synthetic and natural mixtures. • UltraCore Super: Equipped with encapsulated bonding technology for small organic molecules in extreme pH conditions, optimal for high pH buffer requirements. The Avantor® ACE® UltraCore columns present a versatile and high-efficiency solution for chromatographic separation needs, accommodating a wide range of molecular sizes and providing enhanced resolution and reduced analysis time. Their adaptability to both HPLC and UHPLC systems, combined with the advantages of solid-core technology, makes them an invaluable tool in analytical and preparative chromatography.

  • PDF

A novel method for solving structural problems: Elastoplastic analysis of a pressurized thick heterogeneous sphere

  • Abbas Heydari
    • Advances in Computational Design
    • /
    • 제9권1호
    • /
    • pp.39-52
    • /
    • 2024
  • If the governing differential equation arising from engineering problems is treated as an analytic, continuous and derivable function, it can be expanded by one point as a series of finite numbers. For the function to be zero for each value of its domain, the coefficients of each term of the same power must be zero. This results in a recursive relationship which, after applying the natural conditions or the boundary conditions, makes it possible to obtain the values of the derivatives of the function with acceptable accuracy. The elastoplastic analysis of an inhomogeneous thick sphere of metallic materials with linear variation of the modulus of elasticity, yield stress and Poisson's ratio as a function of radius subjected to internal pressure is presented. The Beltrami-Michell equation is established by combining equilibrium, compatibility and constitutive equations. Assuming axisymmetric conditions, the spherical coordinate parameters can be used as principal stress axes. Since there is no analytical solution, the natural boundary conditions are applied and the governing equations are solved using a proposed new method. The maximum effective stress of the von Mises yield criterion occurs at the inner surface; therefore, the negative sign of the linear yield stress gradation parameter should be considered to calculate the optimal yield pressure. The numerical examples are performed and the plots of the numerical results are presented. The validation of the numerical results is observed by modeling the elastoplastic heterogeneous thick sphere as a pressurized multilayer composite reservoir in Abaqus software. The subroutine USDFLD was additionally written to model the continuous gradation of the material.

전자파 수치 해석을 위해 갤러킨 기법과 보간법을 혼용하여 개선시킨 모멘트법 (Improved Method of Moments Using Hybrid Technique of Galerkin's and Interpolation Methods for Numerical Analysis of Electromagnetic Waves)

  • 황지환;권순구;오이석
    • 한국전자파학회논문지
    • /
    • 제23권4호
    • /
    • pp.541-550
    • /
    • 2012
  • 본 논문에서는 3차원 공간의 전자파 수치 해석을 위한 모멘트법(method of moments)의 개선된 해석 기법을 선보인다. 전자파 산란 특성을 해석하기 위해 기본적으로 EFIE(Electric Field Integral Equation)와 RWG(Rao-Wilton-Glisson) 기저 함수를 이용하였으며, 계산 효율을 높이기 위해 기존의 갤러킨(Galerkin) 기법과 중심점 보간(interpolation)법을 혼용하여 해석 시간을 단축시켰다. 이때, 계산 정확도 유지를 위해 임피던스 행렬의 각 원소간 거리를 상대 거리 지수로 정의하여 보간법 적용이 가능한 먼 거리 원소를 구분하였다. 제안된 해석 기법의 성능 검증은 금속구의 Mie-series 해법을 이용한 이론적 RCS(Radar Cross Section)를 비교/분석하였다. 또한, 본 연구 결과를 삼면-/전방향- 전파반사기와 같은 산란체에 적용하여 레이더 후방 산란 특성을 분석하였다.

Bending behaviour of FGM plates via a simple quasi-3D and 2D shear deformation theories

  • Youcef, Ali;Bourada, Mohamed;Draiche, Kada;Boucham, Belhadj;Bourada, Fouad;Addou, Farouk Yahia
    • Coupled systems mechanics
    • /
    • 제9권3호
    • /
    • pp.237-264
    • /
    • 2020
  • This article investigates the static behaviour of functionally graded (FG) plates sometimes declared as advanced composite plates by using a simple and accurate quasi-3D and 2D hyperbolic higher-order shear deformation theories. The properties of functionally graded materials (FGMs) are assumed to vary continuously through the thickness direction according to exponential law distribution (E-FGM). The kinematics of the present theories is modeled with an undetermined integral component and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate; therefore, it does not require the shear correction factor. The fundamental governing differential equations and boundary conditions of exponentially graded plates are derived by employing the static version of principle of virtual work. Analytical solutions for bending of EG plates subjected to sinusoidal distributed load are obtained for simply supported boundary conditions using Navier'is solution procedure developed in the double Fourier trigonometric series. The results for the displacements and stresses of geometrically different EG plates are presented and compared with 3D exact solution and with other quasi-3D and 2D higher-order shear deformation theories to verify the accuracy of the present theory.

항만 부진동 해석을 위한 무한요소 (Infinite Element for the Analysis of Harbor Resonances)

  • Park, Woo-Sun;Chun, In-Sik;Jeong, Weon-Mu
    • 한국해안해양공학회지
    • /
    • 제6권2호
    • /
    • pp.139-149
    • /
    • 1994
  • 본 논문에서는 항만 부진동현상을 예측할 수 있는 무한요소를 이용한 유한요소기법에 대해서 연구하였다. 지배방정식으로는 완경사방정식을 사용하였으며, 고체경계면에서의 에너지 손실효과를 고려하기 위하여 부분반사조건을 도입하였다. 외부영역 무한경계조건을 효율적으로 처리하기 위하여 새로운 무한요소를 개발하였다. 개발된 무한요소의 형상함수는 해석적 도유함수의 급수해의 진행파항을 나타내는 제 1종 Hankel 함수의 점근적 형태를 사용하여 결정하였다. 수치해석상의 효율성을 제고하기 위하여 무한요소의 시스템행렬 구성시 나타나는 무한방향으로의 적분을 해석적으로 수행하였다. 기존의 수리실험 및 타 수치모형 결과와의 비교를 통하여 본 연구에서 개발한 무한요소에 기초한 수치모형의 타당성을 입증하였다. 또한 해석의 효율성과 정도에 직접적으로 영향을 주는 무한요소의 위치결정에 대한 수치실험도 수행하였다.

  • PDF

LNG 저장탱크 보강재의 구조해석 및 최적설계 (Structure Analysis and Design Optimization of Stiffeners in LNG Tanks)

  • 김성주;진교국;하성규;서흥석;윤인수
    • 대한기계학회논문집A
    • /
    • 제36권3호
    • /
    • pp.325-330
    • /
    • 2012
  • 본 연구에서는 액화천연가스(LNG 즉 Liquefied Natural Gas) 저장탱크의 보강재(stiffener) 설계를 위한 주요 설계인자들의 특성을 파악하고 구조 최적설계를 수행하였다. 보강재가 결합된 LNG 저장탱크의 내조는 외부의 펄라이트(perlite)의 압력에 의해 좌굴되지 않도록 설계되는데, 기존의 보강재 설계방법에서는 펄라이트 압력이 내조 높이에 무관하게 동일하다고 가정하여, 보강재의 과도한 설계를 초래하였다. 본 연구에서는 펄라이트의 물성값에 따른 펄라이트 압력분포의 영향을 살펴보았고, 최적설계를 통해 기존 설계보다 보강재의 재료비용이 15.3% 절감됨을 알 수 있었다.