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Abstract [ In this paper, a finite element technique is applied to the prediction of the wave resonance
phenomena in harbors. The mild-slope equation is used with a partial reflection boundary condition
introduced to model the energy dissipating effects on the solid boundary. For an efficient modeling
of the radiation condition at infinity, a new infinite element is developed. The shape function of
the infinite element is derived from the asymptotic behavior of the first kind of the Hankel's function
in the analytical boundary series solutions. For the computational efficiency, the system matrices
of the element are constructed by performing the relevant integrations in the infinite direction analyti-
cally. Comparisons with the results from experiments and other solution methods show that the
present model gives fairly good results. Numerical experiments are also carried out to determine
the proper distance to the infinite elements from the mouth of the harbor, which directly affect
the accuracy and efficiency of the solution.
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1. INTRODUCTION

It has been the case that the site sclection of
new industrial harbors are mainly determined by
the economic situation of the nearby industrial co-
mplexes. Accordingly, the harbors can not often
find naturally well protected sites for their construc-
tions, and some artificial structures are normally
installed to protect harbors from waves. The cargo
handling works in the harbors are significantly affe-
cted by the degree of harbor tranquility. Hence,
from the initial design stage of the plane layout
of the harbors as well as breakwater systems, the
harbor tranqulity should be properly considered

and predicted.

The numerical computation of harbor resonance
also belongs to the technology of harbor tranquility
analysis. Thére are three types of the numerical so-
lution techniques for analyzing the harbor resona-
nce, ie., the finite difference method (FDM: Raich-
len and Naheer, 1976), the boundary integral equa-
tion method (BIEM) or boundary element method
(BEM: Lee, 1969), and the finite element method
(FEM: Chen, 1984). Especially, BEM (or BIEM)
and FEM are frequently adopted by numerous re-
searchers because of their some advantages in use.
But the first peak-period of the resonance in harbor
can be estimated almost precisely by any method.
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Although Lee (1975) developed an extended BEM
model in which the computational region is divided
into several subregions of different water depth, in
general, the application of the BEM model is hardly
appropriate to the harbor with varying water depth.
Therefore, the interests in the alternative approaches
based on the finite element technique have been
increased considerably.

Application of the finite element method to sur-
face wave problems have been extensively reviewed
by Mei (1978) and Zienkiewicz et al. (1978). There
are mainly four different approaches in treating the
radiation condition at infinity, ie.,

1. Usage of modified radiation boundary condi-
tion: direct or modified radiation condition is app-
lied at the finite distance from the source of the
disturbances (Bai, 1972; Huang e al., 1985; Shéran,
1986; Bando et al., 1984).

2. Matching analytical boundary series solutions:
the computational wave field is divided into two
regions. The internal region including harbors,
break-waters, and so an, is discretized into conven-
tional finite elements and the external region loca-
ted at the outside of the internal region is expressed
by analytical solutions. Matching conditions are int-
roduced at the interface of two regions (Bai and
Yeung, 1974; Chen andd Mei, 1974; Yue e al., 1978;
Chen, 1984; Chen, 1986; Jeong, 1991).

3. Matching boundary integral solutions: Green
functions are used at the external region instead
of the analytical solution (Bai and Yeung, 1974;
Zienkiewicz et al., 1977, Taylor and Zietsman, 1981).

4. Usage of infinite elements: external region is
modeled by infinite elments (Bettess and Zienkie-
wicz, 1977; Zienkiewicz er al., 1985; Lau and Ji, 1989;
Chen, 1990; Park et al, 1991; Park e al, 1992).
In this study, the concept of the infinite element
has been adopted.

Bettess and Zienkiewicz (1977) firstly applied an
infinite element with exponential decay to the hori-
zontal plane problems of surface waves. Later, Zie-
nkiewicz et al. (1985) presented a new infinite ele-
ment with 2 decay. It was reported that this ele-
ment gives more accurate results than the infinite
element with exponential decay and any boundary
clements. Recently, Chen (19 V) suggested a new

infinite element with shape functions derived from
the asymptotic behavior of the scattered waves at
infinity. It was shown that the element gives fairly
good results compared with the analytical solutions
and experimental data. However, he did not discuss
the proper location of the interface between the in-
ner and outer regions for obtaining appropriate so-
lutions. The location, directly dependent on the in-
cident wave conditions, can significantly affect the
solution accuracy and efficency. _

In this study, an efficient finite element model
incorporating the infinite element has been develo-
ped for the prediction of wave resonance pheno-
mena in harbors. Based on the linear wave theory,
a mild-slope equation is used. A partial reflection
boundary conition is introduced to model the ene-
rgy dissipating effects on the solid boundary. For
modeling efficiently the radiation condition at infi-
nity, a new infinite element is developed. The shape
function of the infinite element is derived from the
asymptotic behaviors of the first kind of the Hankel’
s function in the analytical boundary series solu-
tions. For the computational efficiency, the system
matrices of the element are constructed by perfor-
ming the relevant integrations in the infinite direc-
tion analytically. The model can be applied to the
harbor with an arbitrary interface angle between
the left and right side coastal lines in the exterior
region. The effect of the angle can not be conside-
red in the existing models ie., the hybrid element
method, the boundary damper and infinite element
techniques. The effects of the energy dissipation on
the coastal lines in the outer region can be also
considered.

To validate the infinite element, numerical analy-
ses are performed for a fully opened rectangular
harbor for which the laboratory data (Ippen and
Goda, 1963; Lee, 1969) and the results from other
numerical techniques are available. Firstly, some
numerical experiments are carried out to set up
proper criteria related to the distance to the infinite
elements from the mouth of the harbor as well as
the size of the finite elements. The criteria directly
affect the extent of fluid domain discretization and
the solution accuracy. Comparisons with the results
from the laboratory experiments and other solution
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Fig. 1. Definition sketch for the boundary value problem.

methods show that the present model gives fairly
good results. Using the appropriately selected crite-
ria, example analyses are also done to investigate
the effects of the wave reflecting characteristics on
the solid boundary and the effects of the intersec-
tion angle between the left and right side coastal
lines in the outside of the harbor.

2. THEORETICAL FORMULATION

2.1 Governing Equation

In this study, a Cartesian coordinate system (x,
y) and a cylindrical coordinate system (7, 0) arc em-
ployed with r measured radially from the origin of
the Cartesian coordinate system, and 8 from the
positive x-axis as shown in Fig. 1. The fluid is assu-
med to be incompressible and inviscid, and the flow
is irrotational. A regular wave train is considered,
and the wave height is also assumed to be sufficie-
ntly small for linear wave theory to be applied.

For the computational efficiency, the wave field
is divided into two regions, ie. inner region £, in-
side of the harbor and surrounding area and outer
region - outside of the inner region. In the outer
region, ), the depth of water is assumed to be
constant in the radial direction, but the depth in
the circum-ferential direction is varied with that of
the interface between the inner and outer regions,

I. In both of inner and outer regions, the wave
potential can be expressed as the combination of
incident wave potential ¢, and scattered wave pote-
ntial ¢s. In the inner region, ), both wave poten-
tials are not given explicitly, hence their sum ¢,
is taken to be unknown, ie., &;=ds+dr. In the outer
region, b, however, the unknown ¢, is taken to
be the scattered wave potential, ie., ¢p=¢s since
the incident wave potential, ¢, is assumed to be
known.

Then, the monochromatic and simple-time har-
monic waves propagating over a mildly sloped sea
bed with variable depths in both regions can be
described as follows (Berkhoff, 1976; Chen, 1984).

Co . .

V-(CCgV¢f)+~Eo> =0 in & 1)
in which V=g(-Yax i+8(-)gv j, 7 and 7 are unit
vectors in the direction of x and y, respectively, C
is the celerity, C, is the group veloity, w is the angu-
lar frequency, and o(x y) is the two-dimensional
spatial complex of veloity potential. Wave celerity,
C, and group velocity, C,, are given as

C=\ /%Lanh kh Q)

C 2kh
Ce 2[1 sinh 2kh @
in which A(x y) is the water depth and k is the

wave number.

2.2 Boundary Conditions

Coastal boundaries such as slanted coastal lines
and breakwaters generally act as wave energy abso-
rbers. To consider the effect of wave absorbing, the
absorbing boundary condition is introduced along
the solid boundaries, which was developed by Mei
and Chen (1975) as a function of an empirical tef-
lection coefficient, K, normal to the solid bounda-
ries. The boundary condition is represented as

30 _

anl =a¢: on T @
+
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in which » is outward normal to the solid boun-
dary, and a is expressed as

1—-K,

1+K, ©

Reflection coefficient, K,, generally depends on the
wave frequency and its amplitude, and characteris-
tics of the solid boundary.

The matching boundary condition on the inter-
face between the inner and outer regions, I, can
be expressed as

=0t or ;=0 — ¢y (7)
o0 __ oto) 00 dei=0) g
on on on on

The scattered wave potential, ¢s, in the outer region
must satisfy the Sommerfeld radiation condition at
infinity (Sommerfeld, 1949).

lim 5" (— ~ikos)=0 ©

The incident wave potential, ¢, is given as

(Dl:_ lgCa ?:'krcos(e‘el) (10)
[0}

in which ¢, is the amplitude of incident wave and
0, is the attack angle of incident wave.

3. FINITE ELEMENT FORMULATION

3.1 Discretization of Fluid Domain

For the convenience of the finite element formu-
lations, two coordinate systems are used as shown
in Fig. 1, that is the Cartesian coordinate for inner
region and the cylindrical coordinate for outer re-
gion.

To discretize the fluid domain in the standard
finite element manner, it is necessary to describe
the unknown potential, ¢;, in terms of the nodal
potential vector, {¢f}, for an element (¢), and the
prescribed shape function vector, {N}, as follows.

=Nott (11)

The subscript i in equation (11) denotes the inner
region for ;=1 and the outer region for i=2.
Using Galerkin’s techn.g 1e bour y value

problem can be re-formulated as integral equations.
The element contribution to the system equation
can be obtained as

{Re}=— f m{N}[v-(ccqu>,-)+ % w%b,-]dﬂ? (12)

in which {N} is the vector of element shape func-
tions. Using the technique of integration by parts
and Egs. (@), (5), (7), (8), and (11), the system equa-
tions can be obtained as following simultaneous
equations:

Z([Kfn, d+IKrlot+ P — P h=1{0}  (13)

in which [K%,], [K’r], {Fr}, and {F7r,} are the ele-
ment system matrices given by
for inner region:

[Ka]= f [CC,( { "N} +{N ﬂ}')

oy
Cg 2 T e
— 2 NN (149
[Kn)=, CCOINHNY Ty (15)
{Frrt={0} (16)

(DZ + ¢1) {N} dIY

o
] o2 a7)

for outer region:

SR ETE TR

— -2 NN (19)
[K7.)= CCalNHNYT dry (19
{Fef=], CC{aor22 ) iWiars (0

b — )
Forp,} f rfccg—7— {N}dT} @21

3.2 Finite and Infinite Elements

The inner region, €, is modeled by using two
isoparametric elements, ie., eight-noded element and
three-noded line element as shown in Figs. 2 and
3. The Lagrange polynomials are used for the shape
functions of the elements. The eight-noded element
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Fig. 2. Discretization of fluid domain.

is used for discretizing the fluid domain whereas
the three-noded element in used for modeling the
absorbing boundary conditions. The integrations of
quations (14)(17) are made using Gauss-Legendre
quadrature (Carnahan et al., 1969), and the system
matrices are finally constructed.

In order to model efficiently the radiation condi-
tion at infinity, and to consider properly the absor-
ption of wave energy along the coastal lines of the
outer region, two infinite elements are developd, ie.,
three-noded element and one-noded line lement as
shown in Fig. 2 and 4. The three-noded infinite
element is used for disscretizing the fluid domain
in the outer region, and the one-noded element is
used for modeling the energy dissipation effects
along the coastal lines in the outer region. The
shape functions of the elements are derived from
the analytical boundary series solutions given by
for three-noded infinite element (0<&<€o00, — 1<K
1):

N =N N} 22)
for one-noded infinite element (0<¢<co):
NI=NA® 23)

in which {N¢m)} is the Lagrange shape functions,
and N{£) is the shape function in the radial direc-
tion given by

N«&)=ﬁ%a’“ﬁ (24)

in which ¢ is the artificial damping parameter (<
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Fig. 3. Coordinate systems for finite elements.
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Real part Imaginary part

Fig. 5. Shape functions for the three-noded infinite ele-
ment.

k), and r4 is the distance to the infinite elements
from the origin as shown in Fig. 1. The artificial
damping parameter, & has been introduced, to
make the integration in Eq. (18) in the radial direc-
tion bounded. After the integration is completed
analytically, the value of ¢ is taken to be zero.

The shape function, N&), in the radial direction,
except for the artificial damping parameter, have
been derived from the asymptotic expression for the
first kind of Hankel's function in the analytical
boundary series solutions such as

1 .
Os o —\/;—e"" (25)

It is noted that the corresponding shape function
satisfies the radiation condition at infinity. In Fig
5, the shape functions for the three-noded infinite
element as given in Eq. (22) are presented in real
coordinate system.

Then, the system matrices can be constructed
using Eqs. (18)«21) as

[K¢a,]1=A41[Kop] +A4:LKerr ] — A3 [ Keo] (26)

[Ker,]=ACC, Qn
{mz}:Asccg’—f% (k(ncosb+nsind)—a) (28

in which n, and », are the x and y components
of the outward normal vector to the I and 4;'s
are the complex valued coefficients resulting from
the integration of Eqgs. (17 ~( - ;‘ Jhe infi 7 e direc-

tion {see Appendix), and [Ke), [Keo) [Kee] are
defined as

[Kol=[ | NN} d e

[Rol= [ S ool ivol” dr (0)
- ONo L ON1T o

[Kool= [, CG o i 0 Vaor 31

Gauss-Legendre quadrature is used for the integra-
tion in the above equations in the 6-direction.

3.3 Matching the Inner and Outer Regions

The total velocity potential is unknown in the
inner region while the scattered potential is unk-
nown in the outer region. Therefore, it is necessary
to ensure matching the unknown velocity potentials
in the inner and outer regions.

Using the matching boundary conditions in Egs.
(7) and (), the total system matrices can be assem-
bled as

> (Kot + LK ot + Fet+ {Fyh= {0} (32)
in which

(Kl =[K& ]+ (K& (33)

[KO)=[Ks ]+ K] (34)

{Fr}={Fy) (35)

- -
{ny}——frf CC, on {vidrs

— (K] +Ks)) {of} (36)

and {4} is the vector of the incident wave potential
corresponding to nodal points.

4. NUMERICAL RESULTS AND
DISCUSSIONS

A numerical model is applied to the rectangular
harbor to demonstrate its validity. The accuracy and
efficiency of the model depend on two major fac-
tors, that is, the location of the interface between
the inner and outer regions, and the size of the
Anite e'ements. Firstly, numerical experiments are
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Fig. 6. Geometry of a model harbor and finite element
mesh.

performed to determine the appropriate criteria of
both factors. Then, using these criteria, example
analyses are carried out for the harbor varying the
reflection characteristics of the solid boundary, T,
and the intersection angle, v, between the left and
right sides of coastal lines in the outer region.

4.1 Model Harbor

A fully-opened rectangular harbor is adopted as
a model harbor. Since the experimental data (Ippen
and Goda, 1963; Lee, 1969) and the results from
the other numerical techniques are available, the
harbor is frequently used as a reference harbor in
order to verify numerical models. The geometry of
the harbor is presented in Fig. 6@a). The harbor
width is 2.38 inches, the length of harbor is 1225
inches, and the water depth is constant of 10.128
inches in the entire fluid domain. The point, P(0.0,
—12.25) is a reference point for comparisons of the
wave amplification ratios. An example of the finite
element mesh used for numerical experiments is
presented in Fig. 6(b).

4.2 Location of Infinite Element

The analysis is performed for various locations
of the infinite elements from r,=025XL to r,=3.0
XL in which L is incident wave length. Two wave
conditions (the first and the second resonance con-
ditions of the harbor) are considered. The amplifi-
cation ratios of wave height are calculated and co-
mpared at the point P. The experimntal results are
presented in Fig. 7, which are relative erors cov: -
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Fig. 7. Relative errors with varying »; compared with the
results for r,=3L.

pared to the results obtained from the case with
r4=3.0XL. It is found in this figure that the suitable
location of the infinite element may be determined
as 05 times the incident wave length from the
mouth of the harbor (r,=05XL).

4.3 Effects of Finite Element Size

To investigate the size effects of the finite element,
the numerical analysis is carried out using six diffe-
rent size conditions, ie., 1/4, 1/8, 1/12, 1/16, 1/20,
and 1/24 of the wave length, L. The infinite eleme-
nts are fixed at r,=05XL. The amplification ratio
at the point P is also used as a check point. The
relative errors of each element size with respect to
124X L are shown in Fig. 8 It is found that the
results rapidly converged with the increase of the
number of finite elements per wave length. It can
be also observed that finer meshes are required for
the case of longer period wave condition. In general,
a criterion such that the size of the finite element
is less than the 0.25 times the incident wave length
has been accepted for the case of quadratic eleme-
nts used here. However, the present results indicate
that the criterion may not be adequate. It should
be noted that the phenomenon is based on the fact
that the wave lengths used here are very long com-
pared to the size of the harbor. The criterion above
may be still available for the case of short period
wave conditions.

4.4 Example Analysis

Fre- the n.  « 1 («periment above, the proper
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Fig. 8. Relative errors with the number of finite elements
per wave length (L) varied.

location of the infinite element is set as rs=0.5XL
while the finite element size is fixed to 1/24XL.
Using the criteria, example analyses are carried out
for the model harbor with following conditions:

1. Different reflection characteristics on the solid
boundary

2. Different attack angle of the incident wave,
0

3. Different intersection angle, v, between the left
and right side coastal lines in the outer region.

4.4.1 Effects of Reflection Characteristics

In numerical models, it is commonly assumed
that there is no friction on side walls and bottom
of wave basin, and full reflection on the solid bou-
ndary. In real case, it is however impossible to co-
mplete an experiment without the effect of wave
energy dissipation. To obtain more accurate results,
that effect must be considered properly in the nu-
merical model. If not, the estimations may be quite
over-predicted, particularly when the resonance co-
nditions are met.

Fig. 9 shows the comparison of the results of
wave amplification ratios at point P for long-period
wave conditions. In the figure, the solid line denotes
the present results for the case of full reflection,
the rectangular symbols denote the computational
results by Hybrid Element Method (Jeong, 1991).
The circle and triangular symbols indicate the ex-
perimental results by Ippen and Goda (1963) and
Lee (1969), respectively. Both numerical results show
good agreements with the exprimental results, except
for the slight over-estimations »~ nd the fir* reso-
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Fig. 9. Comparison of amplification ratios between the
numerical and exprimental results.
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Fig. 10 Amplificaton ratios for various values of reflection
coefficient, K,, on the solid boundary.

nance condition.

Fig. 10 shows the variations of the amplification
ratios at the point P with varying reflection cofficie-
nts in the inner region. In this figure, it is known
that the amplification ratios are very sensitive to
the reflection coefficient in case of long-period wa-
ves, particularly at the wave resonance conditions.
The results for the case of K,=099 are quite well
compared with the experimntal results in Fig. 9 es-
pecially at the first peak period.

44.2 Effects of Attack Angles of the Incident
Wave

Fig. 11 presents the results for three different at-
tack angle of incident waves, ie, y=270°, 240°
210°. The results indicate that the wave attack angle,
v, does not much effect on the harbor resonance
phenomena. However, the effect may appear signifi-
cantly for the case of short-period wave conditions.
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tal lines in the outer region.

4.4.3 Effects of Intersection Angles, v

The present algorithm can be applied to the case
of the arbitrary intersection angle, y, between the
left and right sides of coastal lines in the outer re-
gion (see Fig. 6(a)). Fig. 12 shows the results for
three different intersection angles. The results indi-
cate that the amplification ratios increase as the
intersection angle, vy, decreases, but the resonance
frequencies are hardly affected.

5. CONCLUSIONS

In this study, an efficient finite element model
incorporating the infinite element has been develo-
ped for the prediction of the harbor resonance phe-
nomena. The model can be applied to the harbor
with an arbitrary intersection angle between the left

and right sies of coastal lines in the outer region.
To model the radiation condition at infinity, an in-
finite element is developed. The shape function of
the infinite element is derived from the asymptotic
behaviors of the progressive wave components in
the analytical boundary series solutions. For the co-
mputational efficiency, the system matrices of the
element are constructed by performing the integra-
tion in the infinite direction analytically.

The major conclusions obtained by the present
model are summarized as follows:

1. The present finite element model incorporating
infinite elements for modeling radiation condition
gives fairly nice results well agreed with the experi-
mental data and those obtained by other available
solution methods.

2. The extent of the enlargement of the inner
domain in directly dependent on the incident wave
length, and its suitable location is determined as
0.5 times the incident wave length from the mouth
of the harbor (r,=0.5XL).

3. Although the quardratic elements are used, the
size of the finite element should be much less than
0.25 times the incident wave length to obtain reaso-
nable results, particularly for long-period wave con-
ditions.

4. The wave amplification ratios are significantly
affected by the variation of reflection characteristics
on the solid boundary, particularly around the reso-
nance conditions.

5. The example analysis with various intersection
angle, y, between the left and right sides of coastal
lines in the outer region indicate that the amplifica-
tion ratios increase as the intersection angle, v, dec-
reases, but the resonance frequencies are hardly af-
fected.
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APPENDIX: DETERMINATION OF A/’s

In equations (76)-(28), 4s are the complex: valued
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coefficients associated with the integration in the
radial direction as follows.

A,:f:r,, (ik—s—z(élT/o)ze”"é’kﬁ de

) 1 .
B e
Az—fo v k-2 e

A_‘;:J’: rAeZ"kEAZE‘: dé

— @© T4 e — 26t
As fo —§—+7A—6’2' dé

AS:J’@O /A e(k§+(§+rA)cos(9*9])*E§ d§
0 §+rA

After integrating the above equations with respect
to & from O to infinity, and taking £=0, the 4s
can be obtained as function of k and r, which
are given by

A= %— L;A [1—e Zka(c2kry) +is{2kr.))]
Ar=1—"2dkrqe "L cQkr)+is{2kr4)]
irA

2k
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A4: —rAefz""’A {C,(?krA)+l:Y,{2krA)}

— —itkrg m
As=r i/ — ik(1+cos(6—6y)

.

[1-®(/~ ikra(1+ cos(®@—6,)))]

in which ¢{ - ) and s{ - ) are cosine and sine integ-
ral functions defined as (Gradshteyn and Ryzhik,
1980)

w X —1
c,(x)z—f C—(;S’dz=y+1n(x)+f0 O

{
© COSt n x  sint
{x)=— —dt=——+f —dt
) L t 2 Jo ot

and, ®( - ) is error function defined as

()= 2t

2 J’x
—= e
Vo
In the above equations, y is the Euler’s constant
(=0.5772156649) and In( - ) is the natural logarithm.
These integral values are obtained by using IBM
application problem (1970) (SSP: Scientific Subrou-

tine Package) with slight modific-tions.
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