• Title/Summary/Keyword: analytical properties

Search Result 1,563, Processing Time 0.033 seconds

Development of Remote Sensing Reflectance and Water Leaving Radiance Models for Ocean Color Remote Sensing Technique (해색 원격탐사를 위한 원격반사도 및 수출광 모델의 개발)

  • 안유환
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.243-260
    • /
    • 2000
  • Ocean remote sensing reflectance of just above water level was modeled using inherent optical properties of seawater contents, total absorption (a) and backscattering(bb) coefficients ($R_{rs}$=0.046 $b_b$/(a+$b_b$). This modeling was based on the specific absorption and backscattering coefficients of 5 optically active seawater components; phytoplankton pigments, non-chlorophyllous suspended particles, dissolved organic matters, heterotrophic microorganisms, and the other unknown particle components. Simulated remote sensing reflectance($R_{rs}$) and water leaving radiance(Lw) spectra were well agreed with in-situ measurements obtained using a bi-directional fields remote spectrometer in coastal waters and open ocean. $R_{rs}$ values in SeaWiFS bands from the model were analyzed to develop 2-band ratio ocean color chlorophyll with those observed insitu. Also, chlorophyll algorithm based on remote reflectance developed in this study fell in those obtained by a SeaBAM working group. The model algorithms were examined and compared with those observed insitu. Also, chlorophyll algorithm based on remote reflectance developed in this study fell in those obtained by a SeaBAM working group. The remote reflectance model will be very helpful to understand the variation of water leaving radiances caused by the various components in the seawater, and to develop new ocean color algorithm for CASE-II water using neural network method or other analytical method, and in the model of fine atmospheric signal correction.

Evaluation of Cell Viability and Delivery Efficiency in Electroporation System According to the Concentrations of Propidium Iodide and Yo-Pro-1 (전기천공시스템에서 Propidium Iodide와 Yo-Pro-1의 농도에 따른 세포 생존율과 전달효율 평가)

  • Bae, Seo Jun;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.898-906
    • /
    • 2019
  • In this study, basic research was conducted to provide guidelines for selecting fluorescent dye and using proper concentration of fluorescent dye to use evaluation of cell viability and fluorescent dye delivery efficiency. Propidium iodide and Yo-Pro-1 were used as fluorescent dyes. In the evaluation of cell viability and the efficiency of delivery using Propidium Iodide and Yo-Pro-1, the histogram of each fluorescent dye was different depending on the type of fluorescent dye and the concentration used. These results were related to the characteristics of the fluorescent dyes used. This was related to the properties of the fluorescent dyes used. From these results, it was found that the analytical results depending on the characteristics of the fluorescent dyes used in the cell analysis. The effect of the fluorescent dye on the cell was confirmed, but it was confirmed that it did not affect the analysis result. In addition, the influence of interference between fluorescent signals was confirmed when two or more kinds of fluorescent dyes were used for analysis. The higher the concentration of Yo-Pro-1 was, the larger the effect of interference was, and the concentration of Propidium Iodide did not affect the interference of fluorescence signal. This study confirmed that the evaluation of the cell viability and the evaluation of the delivery efficiency were influenced by the type and concentration of the fluorescent dyes and it was related to the characteristics of the fluorescent dyes. Based on the results, appropriate concentrations of fluorescent dyes suitable for evaluation of cell viability and delivery efficiency were suggested.

Scientific Analysis of Firing Characteristics for Walls and Rooftiles Excavated from Jeseoksa Dump-site, Iksan (익산 제석사지 폐기유적 벽체 및 기와의 피열특성)

  • Ahn, Kyoung Suk;Lee, Min Hye;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.567-578
    • /
    • 2021
  • In this study, the physicochemical properties of 21 wall fragments and rooftile pieces excavated from Jeseoksa Dump-site were analyzed, and the possibility of heat exposure, such as the fire reported in the literature, was investigated by estimating the firing temperature. From the results, it was estimated that the rooftiles were composed of refined materials, and the walls were composed of materials having different particle sizes depending on the layer. Unlike ordinary rooftiles and walls, they exhibited an uneven surface with traces of bloating phenomenon in the cross section. It was estimated from the blackening of some portions that firing was not performed in a controlled state in a constant firing environment. In addition, the estimated firing temperature showed that the non-overfired rooftiles had endured a firing temperature of 900℃ or less, but the over-fired samples were subjected to a temperature of 1,000℃ or higher and were fired at a temperature higher than the manufacturing temperature at that time. Additionally, the rooftiles probably became defective during firing or molding at the time of production, but the non-overfired rooftiles exhibited an intact shape and showed the possibility of heat exposure due to fire. Therefore, the analytical results of this study confirm that the defective architectural components damaged by the fire, as reported in the literature, were discarded in the Jeseoksa dump-site.

Analytical Behavior of Concrete Derailment Containment Provision(DCP) according to Train Impact Loading (열차 충돌하중에 대한 콘크리트 일탈방호시설물(DCP)의 해석적 거동 검토)

  • Yi, Na-Hyun;Kim, Ji-Hwan;Kang, Yun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.604-613
    • /
    • 2018
  • In recent years, numerous train derailment accidents caused by deterioration and high speed technology of railways have increased. Guardrails or barriers of railway bridges are installed to restrain and prevent the derailment of the train body level. On the other hand, it can result in a high casualties and secondary damage. Therefore, a Derailment Containment Provision (DCP) within the track at the wheel/bogie level was developed. DCP is designed for rapid installation because it reduces the impact load on the barrier and inertia force on the steep curve to minimize turnover, fall, and trespass on the other side track of the bridge. In this paper, DCP was analyzed using LS-Dyna with a parameter study as the impact loading location and interface contact condition. The contact conditions were analyzed using the Tiebreak contact simulating breakage of material properties and Perfect bond contact assuming fully attached. As a result, the Tiebreak contact behaved similarly with the actual behavior. In addition, the maximum displacement and flexural failure was generated on the interface and DCP center, respectively. The impact analysis was carried out in advance to confirm the DCP design due to the difficulties of performing the actual impact test, and it could change the DCP anchor design as the analysis results.

A Collision Simulation Study on the Structural Stability for a Programmable Drone (충돌 시뮬레이션을 통한 코딩 교육용 드론의 구조적 안정성 연구)

  • Kim, Myung-Il;Jung, Dae-Yong;Kim, Su-Min;Lee, Jin-Kyu;Choi, Mun-Hyun;Kim, Ho-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.627-635
    • /
    • 2019
  • A programmable drone is a drone developed not only to experience the basic principles of flight but also to control drones through Arduino-based programming. Due to the nature of the training drones, the main users are students who are inexperienced in controlling the drones, which often cause frequent collisions with external objects, resulting in high damage to the drones' frame. In this study, the structural stability of the drone was evaluated by means of a structural dynamics based collision simulation for educational drone frame. Collision simulations were performed on three cases according to the impact angle of $0^{\circ}$, $+15^{\circ}$ and $-15^{\circ}$, using an analytical model with approximately 240,000 tetrahedron elements. Using ANSYS LS-DYNA, which provides excellent functions for the simulation of the dynamic behavior of three-dimensional structures, the stress distribution and strain generated on the drone upper, the drone lower, and the ring assembly were analyzed when the drones collided against the wall at a rate of 4 m/s. Safety factors resulting from the equivalent stress and the yield strain were calculated in the range of 0.72 to 2.64 and 1.72 to 26.67, respectively. To ensure structural stability for areas where stress exceeds yield strain and ultimate strain according to material properties, the design reinforcement is presented.

Evaluation of Hydration Heat Properties of Mass Concrete and Crack Resistance Performance in Practical Large Underground Structures Using Ternary Blended Cement (3성분계 시멘트를 활용한 실 대형 지하구조물의 매스 콘크리트 수화 발열 특성 및 균열 저항성 평가)

  • Choi, Yun-Wang;Oh, Sung-Rok;Lee, Jae-Nam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.82-91
    • /
    • 2019
  • In this study, in order to evaluate Hydration Heat Characteristics of mass concrete using ternary blended cement for large underground structures, the analysis considering the temperature history and the thermal characteristics inside the actual structure was performed. The results of the analysis are compared with the measured values to verify the reliability of the analysis and to evaluate the crack resistance performance. As a result of the measured the actual structure temperature, The adiabatic temperature rise coefficients K and ${\alpha}$ of the slab were $35.1^{\circ}C$ and 0.72, respectively, and the wall was analyzed as $29.3^{\circ}C$ and 0.67. The analytical results and the correlation coefficients(r) were 0.95 and 0.98, respectively. As a result of evaluating the crack resistance of slab and wall, the minimum crack index of slab and wall was 1.22 and 1.20, respectively. These results were found to satisfy the site management standards.

A Study on the Analysis of the Relaxation Area and the Improvement Effect of the Ground by Road Subsidence (지하연속벽 배면 도로의 지반침하에 따른 이완영역분석방법과 지반 보강 효과검증에 관한 연구)

  • Lee, Hyoung Kyu;Lee, Yong-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.1
    • /
    • pp.29-41
    • /
    • 2021
  • Although underground works are essential to use underground spaces in urban areas efficiently, various damages caused by constructions have often occurred, making them major social problems. Since 2018, it is stipulated in the Special Act on Underground Safety Management that appropriate construction methods must be used in the design stage to prevent various damage cases. This Special Act includes establishing an area subject to underground safety impact assessment, analysis of ground and geological status, review of effects caused by changes in groundwater, review of ground safety, and establishment of measures to secure underground safety. This study area consists of various strata in order of landfill, sedimentary silt, sedimentary sand, sedimentary gravel, weathering zone, and foundation rock. Also, the slurry wall, a highly rigid underground continuous wall, was chosen as a construction method to consider high water table distribution and minimize the influence of the surroundings in this area. However, ground subsidence occurred on the road nearby in December 2019 due to the inflow of loosening soil to the construction area. Thus, several types of site investigations were conducted to suggest an appropriate analysis method and to find out loosed ground behavior and its area for the subsided site. As a result, new design soil properties were re-calculated, and the reinforcement measures were proposed through analytical verification.

Analysis of Volatile Organic Compounds in Sediments Using HS-GC/MS - Confirmation of Matrix Effects in External and Internal Standard Methods - (HS-GC/MS를 이용한 퇴적물 중 휘발성유기화합물 분석 - 외부 및 내부표준방법에서 매질영향 확인 -)

  • Shin, Myoung-Chul;Jung, Da-som;Noh, Hye-ran;Yu, Soon-ju;Seo, Yong-Chan;Lee, Bo-Mi
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.510-519
    • /
    • 2021
  • Volatile Organic Compounds (VOCs) in sediments, which can cause human health problems, have been monitored in Korea since 2014. Measured VOC concentrations can be affected by matrix type and the volatility of target substances. In this study, (1) VOCs volatility and the influence of matrix interference were confirmed, and (2) internal standards (IS) method was applied to improve analytical method. For these purposes, method detection limit (MDL), calibration linearity, precision and accuracy of VOCs were compared in various matrices using the IS. Some of VOCs in sediments showed different peak areas and reduced rates compared to water matrix. It was suggested that adsorption properties of sediments hindered the migration to vapor during heat pretreatment in headspace method. A calibration curve was created in clean sand. Recovery rates for the calibration curve method and IS applying method were 64.1~83.1% and 99.1~119.3%, respectively. Relative standard deviations ranged from 11.1% to 21.6% for the calibration curve method and those for IS ranged 4.7% to 13.7%. In case of real sediment, calibration curve and 1,2-Dichlorobenzene-d4 (ODCB) among IS were not suitable. The average recovery rate of Fluorobenzene (FBZ) increased by 56.4% and Relative Standard Deviation (RSD) by 4.7%. However, the recovery rate was increased in the samples with large values of igniting intensity. This study confirmed that influence of the matrix of VOCs in sediment, and addition of IS materials improved precision and accuracy. Although IS corrects volatilization and adsorption, it is recommended that more than two types of IS should be added rather than single.

Development of Standard Operating Procedures (SOPs), Standardization, TLC and HPTLC Fingerprinting of a Polyherbal Unani Formulation

  • Naaz, Arjumand;Viquar, Uzma;Naikodi, Mohammad Abdul Rasheed;Siddiqui, Javed Inam;Zakir, Mohammad;Kazmi, Munawwar Husain;Minhajuddin, Ahmed
    • CELLMED
    • /
    • v.11 no.4
    • /
    • pp.21.1-21.9
    • /
    • 2021
  • Background: Unani System of Medicine (USM) has its origin to Greece. To ensure and develop the quality, authenticity of Unani drugs, standardization on modern analytical parameter is essential requirement for drugs. Objectives: The aimed of the present study was to develop a standard profile of "Qurṣ-e-Mafasil" by systematic study through authenticated ingredients, pharmacognostic identification followed by physicochemical, TLC, HPTLC fingerprinting analysis as per standard protocol. Material and Methods: In this study three batches of "Qurṣ-e-Mafasil" QM were prepared by standard method as per UPI had been followed by organoleptic properties of formulation such as appearance, color, odor, taste. Powder Microscopy and physicochemical studies were carried out such as Uniformity of weight, Friability, Disintegration time, hardness, LOD, ash vales and extractive values in like aqueous, alcohol & hexane. Further qualitative tests such as Thin-Layer Chromatography (TLC), and High-Performance Thin Layer Chromatography (HPTLC) studies were also carried out to develop fingerprint pattern of the alcoholic solvent extract of QM. Phytochemical screening was carried out in different solvent extracts such as alcoholic, aqueous and chloroform extracts to detect the presence phytoconstituents in the formulation QM. Heavy metals, Microbial Load Contamination and pesticidal residues were also determined. Results: Qurṣ-e-Mafasil showed tablet-like appearance, light brown colour, mild pungent odour and acrid taste. Uniformity of weight (mg), friability (rpm), and hardness (kg/cm) and disintegration time was ranged between (500 to 503), (0.0340 to 0.038), (8.40 to 8.67) and (4-5 minutes) respectively for the three batches. Loss in weight on drying at 105℃ was ranged between (8.3425 to 8.7346). Extracted values were calculated in distilled water ranged between (30.9091 to 31.4358), hexane (1.1419 to 1.4281), and alcohol (3.3352 to 3.3962). The ash values recorded were ranged between (3.7336 to 3.8378), and acid insoluble ash (0.5859 to 0.6112).

Estimating soils properties using NIRS to assess amendments in intensive horticultural production

  • Pena, Francisco;Gallardo, Natalia;Campillo, Carmen Del;Garrido, Ana;Cabanas, Victor Fernandez;Delgado, Antonio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1615-1615
    • /
    • 2001
  • During the past ten years, Near Infrared Spectroscopy has been successfully applied to the analysis of a great variety of agriculture products. Previous works (Morra et al., 1991; Salgo et al., 1998) have shown the potential of this technology for soil analysis, estimating different parameters just with one single scan. The main advantages of NIR applications in soils are the speed of response, allowing the increase of the number of samples analysed to define a particular soil, and the instantaneous elaboration of recommendations for fertilization and soil amendment. Another advantage is to avoid the use of chemical reagents at all, being an environmentally safe technique. In this paper, we have studied a set of 129 soil samples selected from representative glasshouse soils from Southern Spain. The samples were dried, milled, and sieved to pass a 2 mm sieve and then analysed for organic carbon, total nitrogen, inorganic nitrogen (nitrate ammonium), hygroscopic humidity, pH and electrical conductivity in the 1:1 extract. NIR spectra of all samples were obtained in reflectance mode using a Foss NIR Systems 6500 spectrophotometer equipped with a spinning module. Calibration equations were developed for seven analytical parameters (ph, Total nitrogen, organic nitrogen, organic carbon, C/N ratio and Electric Conductivity). Preliminary results show good correlation coefficients and standard errors of cross validation in equations obtained for Organic Carbon, Organic Nitrogen, Total Nitrogen and C/N ratio. Calibrations for nitrates and nitrites, ammonia and electric conductivity were not acceptable. Calibration obtained for pH had an acceptable SECV, but the determination coefficient was found very poor probably due to the reduced range in reference values. Since the estimation of Organic Carbon and C/N ratio are acceptable NIIRS could be used as a fast method to assess the necessity of organic amendments in soils from Mediterranean regions where the low level of organic matter in soils constitutes an important agronomic problem. Furthermore, the possibility of a single and fast estimation of Total Nitrogen (tedious determination by modifications of the Kjeldahl procedure) could provide and interesting data to use in the estimation of nitrogen fertilizer rates by means of nitrogen balances.

  • PDF