• Title/Summary/Keyword: analytical procedure

Search Result 918, Processing Time 0.042 seconds

Stability Evaluation of In-Line Measurement System with Repeated Measurements (반복 측정이 가능한 인라인 측정시스템의 안정성 평가)

  • Joung, Sooho;Byun, Jai-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.1
    • /
    • pp.36-43
    • /
    • 2004
  • In-line measurement systems are preferred to those in analytical laboratories, since in-line systems provide rapid response to process upsets. If an in-line measurement system exhibits an unstable variation and if this instability in measurement variation goes undetected, it will make the process monitoring procedure invalid. This paper presents a stability evaluation procedure for the in-line measurement system using two independent readings from the in-line measurement system and one reading from the analytical laboratory, which requires less measurement cost and time.

Prediction of deflection of high strength steel fiber reinforced concrete beams and columns

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.133-151
    • /
    • 2012
  • This paper presents an analytical procedure for the analysis of high strength steel fiber reinforced concrete members considering the cracking effect in the serviceability loading range. Modifications to a previously proposed formula for the effective moment of inertia are presented. Shear deformation effect is also taken into account in the analysis, and the variation of shear stiffness in the cracked regions of members has been considered by reduced shear stiffness model. The effect of steel fibers on the behavior of reinforced concrete members have been investigated by the developed computer program based on the aforementioned procedure. The inclusion of steel fibers into high strength concrete beams and columns enhances the effective moment of inertia and consequently reduces the deflection reinforced concrete members. The contribution of the shear deformation to the total vertical deflection of the beams is found to be lower for beams with fibers than that of beams with no fibers. Verification of the proposed procedure has been confirmed from series of reinforced concrete beam and column tests available in the literature. The analytical procedure can provide an accurate and efficient prediction of deflections of high strength steel fiber reinforced concrete members due to cracking under service loads. This procedure also forms the basis for the three dimensional analysis of frames with steel fiber reinforced concrete members.

An Algorithm for Determining Consumable Spare Parts Requirement under Avialability Constraint (운용가용도 제약하에서의 소모성 예비부품의 구매량 결정을 위한 해법)

  • 오근태;나윤군
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.3
    • /
    • pp.83-94
    • /
    • 2001
  • In this paper, the consumable spare parts requirement determination problem of newly procured equipment systems is considered. The problem is formulated as the cost minimization problem with operational availability constraint. Assuming part failure rate is constant during operational period, an analytical method is developed to obtain spare part requirements. Since this solution tends to overestimate the requirements, a fast search simulation procedure is introduced to adjust it to the realistic solution. The analytical solution procedure and the simulation procedure are performed recursively until a near optimal solution is achieved. The experimental results show that the near optimal solution is approached in a fairly short amount of time.

  • PDF

Development of Analytical Method for Ambroxol Hydrochloride and Clenbuterol Hydrochloride Formulation in Korean Pharmaceutical Codex (고시수재 의약품 중 암브록솔염산염 및 클렌부테롤염산염 함유 제제의 함량 시험법 개선)

  • Lee, Tae-Woong;Jeong, Rae-Seok;Park, Soo-Jin;Choi, Lan;Shim, Young-Hun;Choi, Bo-Kyung;Kwak, Hyo-Sun
    • YAKHAK HOEJI
    • /
    • v.58 no.3
    • /
    • pp.190-199
    • /
    • 2014
  • The Korean Pharmaceutical Codex (KPC) analytical method of ambroxol hydrochloride and clenbuterol hydrochloride formulation is complicated and needed to carry out multiple processes during the test. To improve the low efficiency of analytical procedure that makes pharmaceutical laboratory consume much time and high cost to conduct the test of this formulation, this study was performed for simplifying the pretreatment process and optimizing conditions of the HPLC assay. The analytical procedure using HPLC was developed to establish analytical specification for ambroxol hydrochloride and clenbuterol hydrochloride formulations. The newly developed analytical method has good linearity ($R^2$ >0.999), specificity, precision (RSD<1.0%) and the recovery ranges of 98.50~101.84% for ambroxol, 98.29~101.35% for clenbuterol syrup and 98.66~101.71% for clenbuterol tablets. The LOQs were 0.204 ${\mu}g/ml$ for ambroxol, 0.021 ${\mu}g/ml$ for clenbuterol syrup and 0.073 ${\mu}g/ml$ for clenbuterol tablets. The new method was performed with commercially available samples to confirm analytical conditions and validated to be suitable for saving time and cost to control the quality of routine manufactured products. This analytical method will be used for revising the monograph of ambroxol hydrochloride and clenbuterol hydrochloride formulation in next supplement of KPC.

Introduction of the Rapid Analysis Method for PCBs in Insulating Oils and Its Comparison Study to the Analysis Method in Korea

  • Hong, Jang-Ho;Takahashi, Tomohumi;Ishizaka, Takahiro;Toita, Hideki;Min, Byung-Yoon;Honda, Katsuhisa
    • Environmental Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • The aim of this research was to introduce a new rapid analysis method (heating of the multi-layer silica gel column/alumina column) for polychlorinated biphenyls in insulating oils, and to compare our new method with the analytical method currently used in Korea. The entire pretreatment procedure was completed within 2 hr, using about only 20 mL of solvents via our rapid analytical method. Furthermore, the pretreatment procedure can always be uniformly performed, regardless of oil type (JIS 1~JIS 7 and KS 1~KS 7). The recovery rates were more than 89%, with relative standard deviations below 6.0%. In conclusion, this rapid analytical method could reduce the pretreatment time and solvent usage by 1/10 and between 1/25 and 1/50, respectively, compared to analytical method currently used in Korea.

Improved analytical formulation for Steel-Concrete (SC) composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.463-476
    • /
    • 2021
  • The concept of using Steel-concrete (SC) composite walls as retaining walls has recently been introduced by the authors and their effectiveness of resisting out-of-plane loads has also been demonstrated. In this paper, an improved analytical formulation based on partial interaction theory, which has previously been developed by the authors, is presented. The improved formulation considers a new loading condition and also accounts for cracking in concrete to simulate the real conditions. Due to a limited number of test specimens, further finite element (FE)simulations are performed in order to verify the analytical procedure in more detail. It is observed that the results from the improved analytical procedure are in excellent agreement with both experimental and numerical results. Moreover, a detailed parametric study is conducted using the developed FE model to investigate effects of different parameters, such as distance between shear connectors, shear connector length, concrete strength, steel plate thickness, concrete cover thickness, wall's width to thickness ratio, and wall's height to thickness ratio, on the behavior of SC composite walls subjected to out-of-plane loads.

Theoretical analysis of Y-shape bridge and application

  • Lu, Peng-Zhen;Zhang, Jun-Ping;Zhao, Ren-Da;Huang, Hai-Yun
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.137-152
    • /
    • 2009
  • Mechanic behavior of Y-shape thin-walled box girder bridge structure is complex, so one can not exactly hold the mechanical behavior of the Y-shape thin-walled box girder bridge structure through general calculation theory and analytical method. To hold the mechanical behavior better, based on elementary beam theory, by increasing the degree of freedom analytical method, taking account of restrained torsiondistortion angledistortion warp and shearing lag effect at the same time, authors obtain a thin-walled box beam analytical element of 10 degrees of freedom of every node, derive stiffness matrix of the element, and code a finite element procedure. In addition, authors combine the obtained procedure with spatial grillage analytical method, meanwhile, they build a new analytical method that is the spatial thin-walled box girder element grillage analysis method. In order to validate the precision of the obtained analysis method, authors analyze a type Y-shape thin-walled box girder bridge structure according to the elementary beam theory analytical method, the shell theory analytical method and the spatial thin-walled box girder element grillage analysis method respectively. At last, authors test a type Y-shape thin-walled box girder bridge structure. Comparisons of the results of theory analysis with the experimental text show that the spatial thin-walled box girder element grillage analysis method is simple and exact. The research results are helpful for the knowledge of the mechanics property of these Y-shape thin-walled box girder bridge structures.

Implementation of Bond Slip Effect in Analysis of RC Beams Using Layerd Section Method (적층단면법에 의한 철근콘크리트 보 해석에서의 부착슬립효과)

  • Kim Jin-Kook;Kwak Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.1-13
    • /
    • 2006
  • An analytical procedure to analyze reinforced concrete(RC) beams and columns subject to monotonic and cyclic loadings is proposed on the basis of the layered section method. In contrast to the classical nonlinear approaches adopting the perfect bond assumption, the bond slip effect along the reinforcing bar is quantified with the force equilibrium and compatibility condition at the post cracking stage and its contribution is implemented into the reinforcing. The advantage of the proposed analytical procedure, therefore, will be on the consideration of the bond slip effect while using the classical layered section method without additional consideration such as taking the double nodes. Through correlation studies between experimental data and analytical results, it Is verified that the proposed analytical procedure can effectively simulate the cracking behavior of RC beams and columns accompanying the stiffness degradation caused by the bond slip.

Comparison of Heavy Metals Analysis in Sediment (호소내 퇴적물의 중금속 분석 비교)

  • Park, Sun-Ku;Song, Ki-Bong;Cho, Ki-Hwan
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.173-179
    • /
    • 2001
  • The study was carried out to analyze the pollutant Fe, Cu, Cr, Zn, Cd for sediments collected from lake in K river basin. Three analytical methods currently used in Korea, Japan, U.S.A, were compared. Pretreatment using microwave digestion showed higher analytical results for Fe, Cu, Cr, Zn, Cd than Korean Official Method(KOM) and American Toxicity Characteristic Leaching Procedure(TCLP) Method. Also, analytical results using microwave digestion, TCLP and KOM were as follows: 38.1-48.0 mgFe/kg, 10.2-15.9 mgFe/kg AND 3.5-12.6 mgFe/kg, 37.0-50.1 mgCu/kg, 0.06-0.24 mgCu/kg and 0.01-0.03 mgCu/kg, 137.0-152.0 mgZn/kg, 0.67-0.82 mgZn/kg and 0.3-0.5 mgZn/kg, respectively. From this result, a new analytical method for the determination of heavy metal in sediment should be developed for the accurate estimation of pollution degree in sediment.

  • PDF