• Title/Summary/Keyword: analytical orbit model

Search Result 16, Processing Time 0.023 seconds

Geostationary Orbit Surveillance Using the Unscented Kalman Filter and the Analytical Orbit Model

  • Roh, Kyoung-Min;Park, Eun-Seo;Choi, Byung-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.193-201
    • /
    • 2011
  • A strategy for geostationary orbit (or geostationary earth orbit [GEO]) surveillance based on optical angular observations is presented in this study. For the dynamic model, precise analytical orbit model developed by Lee et al. (1997) is used to improve computation performance and the unscented Kalman filer (UKF) is applied as a real-time filtering method. The UKF is known to perform well under highly nonlinear conditions such as surveillance in this study. The strategy that combines the analytical orbit propagation model and the UKF is tested for various conditions like different level of initial error and different level of measurement noise. The dependencies on observation interval and number of ground station are also tested. The test results shows that the GEO orbit determination based on the UKF and the analytical orbit model can be applied to GEO orbit tracking and surveillance effectively.

GROUND TRACK ACQUISITION AND MAINTENANCE MANEUVER MODELING FOR LOW-EARTH ORBIT SATELLITE

  • Lee, Byoung-Sun;Eun, Jong-Woo;Webb, Charles-E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.355-366
    • /
    • 1997
  • This paper presents a comprehensive analytical approach for determining key maneuver parameters associated with the acquisition and maintenance of the ground track for a low-earth orbit. A livearized model relating changes in the drift rate of the ground track directly to changes in the orbital semi-major axis is also developed. The effect of terrestrial atmospheric drag on the semi-major axis is also explored, being quantified through an analytical expression for the decay rate as a function of density. The non-singular Lagrange planetary equations, further simplified for nearly circular orbits, provide the desired relationships between the corrective in-plane impulsive velocity increments and the corresponding effects on the orbit elements. The resulting solution strategy offers excellent insight into the dynamics affecting the timing, magnitude, and frequency of these maneuvers. Simulations are executed for the ground track acquisition and maintenance maneuver as a pre-flight planning and analysis.

  • PDF

Orbital Elements Evolution Due to a Perturbing Body in an Inclined Elliptical Orbit

  • Rahoma, W.A
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.199-204
    • /
    • 2014
  • This paper intends to highlight the effect of the third-body in an inclined orbit on a spacecraft orbiting the primary mass. To achieve this goal, a new origin of coordinate is introduced in the primary and the X-axis toward the node of the spacecraft. The disturbing function is expanded up to the second order using Legendre polynomials. A double-averaged analytical model is exploited to produce the evolutions of mean orbital elements as smooth curves.

REAL - TIME ORBIT DETERMINATION OF LOW EARTH ORBIT SATELLITES USING RADAR SYSTEM AND SGP4 MODEL (RADAR 시스템과 SGP4 모델을 이용한 저궤도 위성의 실시간 궤도결정)

  • 이재광;이성섭;윤재철;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • In case that we independently obtain orbital informations about the low earth satellites of foreign countries using radar systems, we develop the orbit determination algorithm for this purpose using a SGP4 model with an analytical orbit model and the extended Kalman filter with a real-time processing method. When the state vector is Keplerian orbital elements, singularity problems happen to compute partial derivative with respect to inclination and eccentricity orbit elements. To cope with this problem, we set state vector osculating to mean equinox and true equator cartesian elements with coordinate transformation. The state transition matrix and the covariance matrix are numerically computed using a SGP4 model. Observational measurements are the type of azimuth, elevation and range, filter process to each measurement in a lump. After analyzing performance of the developed orbit determination algorithm using TOPEX/POSEIDON POE(precision 0.bit Ephemeris), its position error has about 1 km. To be similar to performance of NORAD system that has up to 3km position accuracy during 7 days need to radar system performance that have accuracy within 0.1 degree for azimuth and elevation and 50m for range.

Coupled Unbalance Response Analyses of a Geared Two-shaft Rotor-bearing System (기어 전동 2축 로터-베어링 시스템의 연성 불균형 응답해석)

  • 이안성;하진웅
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.598-604
    • /
    • 2003
  • In this paper a general solution method is presented to obtain the unbalance response orbit from the finite element based equations of motion of a gear-coupled two-shaft rotor-bearing system, whose shafts rotate at their different speeds from each other. Particularly, are proposed analytical solutions of the maximum and minimum radii of the orbit. The method has been applied to analyze the unbalance response of a 800 refrigeration-ton turbo-chiller rotor-bearing system having a bull-pinion speed increasing gear. Bumps in the unbalance response of the driven high speed compressor rotor system have been observed at the first torsional natural frequency due to the coupling effect of lateral and torsional dynamics. Further, the proposed analytical solutions have agreed well with those obtained by a full numerical approach. The proposed analytical solutions can be generally applied to obtain the maximum and minimum radii of the unbalance response orbits of dual-shaft rotor-bearing systems coupled by bearings as well.

GPS receiver and orbit determination system on-board VSOP satellite

  • Nishimura, Toshimitsu;Harigae, Masatoshi;Maeda, Hiroaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1649-1654
    • /
    • 1991
  • In 1995 the VSOP satellite, which is called MUSES-B in Japan, will be launched under the VLBI Space Observatory Programme(VSOP) promoted by ISAS(Institute of Space and Astronautical Science) of Japan. We are now developing the GPS Receiver(GPSR) and On-board Orbit Determination System. This paper describes the GPS(Global Positioning System), VSOP, GPSR(GPS Receiver system) configuration and the results of the GPS system analysis. The GPSR consists of three GPS antennas and 5 channel receiver package. In the receiver package, there are two 16 bits microprocessing units. The power consumption is 25 Watts in average and the weight is 8.5 kg. Three GPS antennas on board enable GPSR to receive GPS signals from any NAVSTARs(GPS satellites) which are visible. NAVSATR's visibility is described as follows. The VSOP satellite flies from 1, 000 km to 20, 000 km in height on the elliptical orbit around the earth. On the other hand, the orbit of NAVSTARs are nearly circular and about 20, 000 km in height. GPSR can't receive the GPS signals near the apogee, because NAVSTARs transmit the GPS signals through the NAVSTAR's narrow beam antennas directed toward the earth. However near the perigee, GPSR can receive from 12 to 15 GPS signals. More than 4 GPS signals can be received for 40 minutes, which are related to GDOP(Geometric Dillusion Of Precision of selected NAVSTARs). Because there are a lot of visible NAVSTARs, GDOP is small near the perigee. This is a favorqble condition for GPSR. Orbit determination system onboard VSOP satellite consists of a Kalman filter and a precise orbit propagator. Near the perigee, the Kalman filter can eliminate the orbit propagation error using the observed data by GPSR. Except a perigee, precise onboard orbit propagator propagates the orbit, taking into account accelerations such as gravities of the earth, the sun, the moon, and other acceleration caused by the solar pressure. But there remain some amount of calculation and integration errors. When VSOP satellite returns to the perigee, the Kalman filter eliminates the error of the orbit determined by the propagator. After the error is eliminated, VSOP satellite flies out towards an apogee again. The analysis of the orbit determination is performed by the covariance analysis method. Number of the states of the onboard filter is 8. As for a true model, we assume that it is based on the actual error dynamics that include the Selective Availability of GPS called 'SA', having 17 states. Analytical results for position and velocity are tabulated and illustrated, in the sequel. These show that the position and the velocity error are about 40 m and 0.008 m/sec at the perigee, and are about 110 m and 0.012 m/sec at the apogee, respectively.

  • PDF

Analytical & Experimental Study on Microvibration Effects of Satellite (인공위성의 미소 진동 영향성에 관한 해석 및 실험적 연구)

  • Park, Geeyong;Lee, Dae-Oen;Yoon, Jae-San;Han, Jae-Hung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.533-539
    • /
    • 2013
  • Number of components and payload systems installed in satellites were found to be exposed to various disturbance sources such as the reaction wheel assembly, the control moment gyro, coolers, and others. A micro-level of vibration can introduce jitter problems into an optical payload system and cause significant degradation of the image quality. Moreover, the prediction of on-orbit vibration effects on the performance of optical payloads during the development process is always important. However, analyzing interactions between subsystems and predicting the vibration level of the payloads is extremely difficult. Therefore, this paper describes the analytical and experimental approach to microvibration effects on satellite optical payload performance with integrated jitter analysis framework, micro vibration emulator and satellite structure testbed.

  • PDF

On the Contact of Partial Rotor Rub with Experimental Observations

  • Park, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1630-1638
    • /
    • 2001
  • Partial rotor rub occurs when an obstacle on the stator of a rotating machinery disturbs the free whirling motion of the rotor, which is more common than full annular rub among the cases of rubbing in rotating machinery. The intermittent contacts and friction during partial rotor rub makes the phenomenon complex. The several nonlinear phenomena of superharmonics, subharmonics, and jump phenomenon are demonstrated for the partial rub using an experimental apparatus in this study. The orbit patterns are also measured experimentally. In order to explain the phenomena of partial rotor rub, the analytical model for the contact between the rotor and stator should be chosen carefully. In this respect, a piecewise-linear model and a rebound model using the coefficient of restitution are investigated on the basis of the experimental observations. Also, Numerical simulations for the two models of contact are done for the various system parameters of clearance, contact stiffness, and friction coefficient. The results show that the piecewise-linear model for partial rotor rub is more plausible to explain the experimental observgations.

  • PDF

Analysis and Modelling of Dynamically Variable Topology of Low Earth Orbit Satellite Networks (저궤도 위성 네트워크의 동적 토폴로지 해석 및 모델링)

  • Vazhenin, N.A.;Ka, Min-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.155-162
    • /
    • 2004
  • Recently, significant interest is shown to creation rather inexpensive global systems communications on base of Low-Earth-Orbit Satellite Networks (LEOSN). One of problems of design and creation LEOSN is development of the stream control methods and estimation it's efficiency in such networks. The given problem is complicated, that the topology of the satellite networks varies in time. It essentially hinders the analytical decision of the given problem. An effective way of overcoming of these difficulties is simulation modeling. For realization of research experiments on learning the information streams routing algorithms in LEOSN a special program complex SANET was developed. In the given paper principles of development of LEOSN simulation models and architecture of the manager by the process of a simulation modeling of the unit are considered. Methods of promotion of modeling time and architecture of a simulator complex offered in the article allow to boost essentially efficiency of simulation analysis and to ensure simulation modeling of the satellite networks consisting of several hundreds space vehicles.

  • PDF

Analysis on Delta-Vs to Maintain Extremely Low Altitude on the Moon and Its Application to CubeSat Mission

  • Song, Young-Joo;Lee, Donghun;Kim, Young-Rok;Jin, Ho;Choi, Young-Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.213-223
    • /
    • 2019
  • This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30-50 km reference altitude having ${\pm}10km$ deadband limits) around the Moon for 1-6 months and provide almost full coverage of the lunar surface.