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ABSTRACT

This paper presents a comprehensive analytical approach for determining key maneuver
parameters associated with the acquisition and maintenance of the ground track for a
low-earth orbit. A linearized model relating changes in the drift rate of the ground
track directly to changes in the orbital semi-major axis is developed. The effect of
terrestrial atmospheric drag on the semi-major axis is also explored, being quantified
through an analytical expression for the decay rate as a function of density. The non-
singular Lagrange planetary equations, further simplified for nearly circular orbits,
provide the desired relationships between the corrective in-plane impulsive velocity
increments and the corresponding effects on the orbit elements. The resulting solution
strategy offers excellent insight into the dynamics affecting the timing, magnitude,
and frequency of these maneuvers. Simulations are executed for the ground track
acquisition and maintenance maneuver as a pre-flight planning and analysis.

1. INTRODUCTION

Increasingly, low-earth orbiting satellites have become the preferred platforms for a variety of
scientific investigations and telecommunications services. Limited by the Van Allen radiation belts
to altitudes less than 1000 km, these orbits share a common dynamic environment (Wertz 1991).
The primary factors influencing the evolution of such orbits consist of the geopotential, terrestrial
atmospheric drag, and luni-solar gravitation. The relative size of these effects depends on the altitude
of the satellite, with the first two perturbations dominating in regions nearer the Earth and the last
becoming significant toward the upper altitude bound.

To meet the technical objectives of a particular mission, the orbit must typically be constrained
within some tolerance dictated by instrument or operational requirements. Thus, in the presence of
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the perturbing accelerations, periodic propulsive maneuvers are required to maintain the desired orbit.
Following the initial injection from the launch vehicle, similar, though usually larger, maneuvers
are first needed to acquire the mission orbit. For low-earth orbiting satellites, this typically involves
acquisition of the desired ground track and, for sun-synchronous orbits, adjustment of the local mean
equatorial crossing time. Other considerations may warrant additional corrections, such as placement
of the eccentricity vector for frozen orbits.

This analysis concentrates on developing analytical models for the in-plane maneuvers required
to achieve and to maintain the orbit for a mission dedicated to mapping the particular region of
the Earth. These along-track burns add or remove energy from the orbit, altering the semi-major
axis and the eccentricity vector. By phasing the maneuvers during the acquisition phase, the actual
ground track can be aligned with the desired path. In addition, to establish a frozen orbit, in which
the eccentricity vector does not precess, the argument of perigee can be set to the required value
(Chobotov & Karrenberg 1991). Subsequent periodic maneuvers throughout the maintenance phase
must then compensate for the effects of atmospheric drag to ensure that the ground track remains
within the desired tolerance.

Substantial research has been conducted regarding maneuvers in nearly circular orbits. The
maneuver models developed in this paper are adapted from the work done by Cutting et al. (1978), for
the SEASAT-A program, and the extensive analysis by Jones (1976) concerning optimal rendezvous
solutions. The paper begins by discussing the drift of the ground track relative to the desired path
resulting from off-nominal mean orbital parameters. A linearized model of that behavior is then
developed. The subsequent section explores the relationship between atmospheric drag and the semi-
major axis of the orbit. The remaining sections combine the analytical perturbation models with those
for the mancuver parameters to provide a comprehensive strategy for ground-track acquisition and
maintenance maneuver planning. Two spread sheet programs are developed for pre-flight planning
and analysis. Then the simulations are executed for the ground track acquisition and maintenance
maneuvers.

2. MODELING OF THE GROUND TRACK DRIFT

2.1 Ground track drift

The ground track refers to the path of the sub-satellite point, characterized at any time by latitude
and longitude. As a satellite moves through its orbit, the Earth rotates eastward, and the ascending
node precesses due to the J, perturbation. Beginning at an ascending node, after one complete
revolution, the satellite passes over a different point on the Earth at the next ascending node, as
illustrated in Figure 1.

This shift in the ground track from one pass to the next is determined by:

S = P(we — Q) ¢y

where w, represents the rotation rate of the Earth; P, represents the nodal period of the satellite:

2
P, = 27r\/“;3 [1 - gb(%) (4cos?i — 1)} )
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Figure 1. Shift of the Ground Track.

and € represents the precession rate of the ascending node (Kalke 1994):

.3 [u (RN cosi
9-‘5"2@ (%) G-y ®

In these and all other equations, g, J>, and R, represent the gravitational parameter, the second zonal
harmonic coefficient, and the mean equatorial radius of the Earth. The orbit parameters a, e, and 7
represent the mean semi-major axis, eccentricity, and inclination. The value of S can be interpreted
as the shift of the ground track per orbit revolution (rad/rev). The drift rate of the actual ground track
relative to the ideal ground track can then be described by:

0S8 =5 — Sideal 4)

From Equations (1) - (4), the drift rate is clearly a non-linear function of the actual and ideal orbital
parameters. To align the actual ground track with the ideal path, the orbital elements must be adjusted
in such a way as to produce the proper phasing of the drift. The next section outlines a method to
relate drift rate changes directly to semi-major axis corrections.

2.2 Linearization

Solving Equation (4) for the actual mean orbital parameters required to yield the desired drift
rate involves iteration, an unattractive feature for analytical models. Instead, take the Taylor series
of S as defined by Equation (3), about an initial (though non-ideal) orbit, in two variables:

S(Pay@) = S(Pay, Q) + (Pa = Pa,) 1 L@-2)% )

6Pn (P"u ’Qo) 69 (P"o ,Qo)

Substituting for the partial derivatives, subtracting S;q.4; from both sides, and applying Equation
(4) yields: ) )
84S =65, + (we — Q,)AP — P, AQ 6)
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A change in the drift rate from that of the nominal orbit is then given by:
AdS =488 -85, = A1AP — AAQ @)

where the A; notation has been introduced for compactness. Next, the equations for the nodal period
and nodal precession rate must be linearized. Expressing the definitions in a modified form:

27 3 37
Py(a) = —az-—
3 JoR2 cos i‘z/ﬁa‘%
2 1-e)
Again taking Taylor series, normalizing the resulting Aa by the initial semi-major axis a,, and
applying the binomial expansion theorem for small quantities yields:

JoR*(4cos?i—1)a™% = Bja? — Bya™? (8)

[NTN)

Q(a) = Bja~ ©

1 3 ~1 Aa 3 3 _17 (Aa)\?
_ 2 2 i et z _. 2z -
AP = 2{[331% + Baaj ] (a) +3 [Blao Bra; ] (a) }
1
= 5 [C1R+ Csz] (10)
. 7. —1|[/Aa) 9/Aa\?| _ 9 ,
AQ = —EB:;GO [(a—o‘) - 5 (Z) :I = C3 [R"‘ ER ] (11)

Substituting these results into Equation (7) and combining terms produces a quadratic equation
in R:

9
%Alc'z + 514203] R2 + I:%Alcl - 0203] R—-AdS = D1R2 + DR~ AS =0 (12)

which, given an initial orbit and Ad S, can be solved for R:

R= A_a _ —D2ﬂ:y/D%+4D1AJS

13
a, 2D1 ( )

and thus, the Aa is required.

2.3 Effect of Atmospheric Drag

The motion of a satellite through the atmosphere creates a drag force acting opposite in direction
to the velocity vector. This dissipative force removes energy from the orbit, causing the semi-major
axis to decrease. The resulting mean decay rate depends on spacecraft characteristics and atmospheric
density (Kalke 1994):

A
a=- ;n‘cdp\/ﬁ (14)

where A is the spacecraft cross-sectional area normal to the velocity vector; m is the spacecraft mass;
Cj is the drag coefficient; p is the mean density of the atmosphere at the current position; and a is
the current mean semi-major axis.
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Several models of varying degrees of complexity have been developed to estimate the density
within the Earth’s atmosphere as a function of altitude and time. This mission analysis employs
the Marshall Spaceflight Center (MSFC)/J70 Orbital Atmospheric Density Model by Johnson &
Smith (1985), which is a modified version of the Smithsonian Astrophysical Observatory’s Jacchia
1970 model by Jacchia (1970), and has been developed by the National Aeronautics and Space
Administration. Once the decay rate of the semi-major axis has been determined, the effect on the
actual ground track relative to the ideal trace can be ascertained. From the initial value and the decay
rate, the semi-major axis can be computed at any time ¢:

alt) = ao + alt ~ t,) (15)

Neglecting the change in mean inclination during the time period of interest, the new values for
the nodal period and precession rate can be computed directly from the updated semi-major axis via
Equations (2) and (3). Substituting the results into Equations (1) and (4) yields the revised relative
drift rate at time ¢.

3. MANEUVER MODELING

Due to the near circularity of the orbits under consideration, Jones (1976) employs non-singular
orbital elements. Those relevant to this analysis are:

Aa
F,B‘r,ey

ez = €eCcoSw (16)

where

€y = € Sinw

and w represents the argument of perigee.
The effects of radial and transverse AV, on these orbital elements can be determined from the
non-singular form of Lagrange’s planetary equations:

Aa 2r 2uae

- = 7 AV; + WY Ae 17
P . p re . .

Ae, = 5 Sin (w+ HAV, + [25 cos(w+ f) + W sin f sin (w + f)] AV, 18)

Ae, = —% cos (w + f)AV, + [2% sin(w + f) — %esinfcos (w+ f)] AV,  (19)

where the subscripts r and ¢ refer to radial and transverse components, respectively; f represents
the true anomaly; and r represents the geocentric radius. The semi-latus rectum and the angular
momentum are defined as:
p = a(l—¢? (20
h = ip @1
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Furthermore, by linearizing these equations about a circular orbit (e = 0) of semi-major axis a,,
the equations reduce to:

Ao _ 2, /22AV, 22)
a, m

Ae; = sin(w+ f)\/c;zAVr +2cos(w + f) %AV: (23)
Aey, = —cos(w+ f)\/%AVr + 2sin (w + f)\/(:tzAVt 24

These equations now form the basis of the maneuver planning model. The solution algorithm
is designed to provide the burn magnitude and location for each of the maneuvers, as well as the
post-burn orbital elements.

To meet the objectives of the orbit acquisition phase, the drift rate of the ground track must be
adjusted. After specifying the desired change in drift rate, the corresponding change in the semi-
major axis is computed from Equation (13). The necessary AV can then be obtained from Equation
(22):

1Aa [p
AV, = 2 Vo (25)

The desired adjustment requires a velocity increment only in the transverse direction (perpen-
dicular to the radius vector in the direction of motion). The resulting change in the eccentricity vector
can then be calculated using Equations (23) and (24). Observing that AV, = 0,

Ae, = 2cos(w+ f)\/(;zAV, (26)
Ae, = 2sin(w+f) \/‘LZAV; @7

Each of these equations depends on the argument of latitude (w + f) of the planned burn.
The relative size of the change in each component of the eccentricity vector dictates the post-burn
argument of perigee, w;:
ey, + Aey
ez, + Aeg

e
y
tanwy; = —- =

€x

28)
1

Substituting Equations (26) and (27) into Equation (28), and applying trigonometric identities,
the following expression can be derived:

. 1 Ccosw
sin [(wo + fo) —wi] = 5, /aﬁ AV,:I(EZ" tanw; — ey_) (29)

where the subscript o has been added to the components of the argument of latitude to indicate that
those parameters refer to the pre-burn orbit. This equation can then be solved for the argument of
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latitude of the burn,

1|1 cos
ot o) = ot sint [ 1 [EDE e, any —e,,)] (0)

The arcsine function, however, yields two solutions:

sin"!z=a & sin!z=180°—«a (3Y)

Thus, for a single user-specified Aw, two solutions for the burn location yield the desired result,
but produce two different post-burn eccentricities. The preferred argument of latitude for the burn
must then be chosen in light of the effect on the orbital eccentricity.

From Equation (29), it also becomes evident that there must be a maximum value by which
the argument of perigee can be changed in a single maneuver. Noting that the right-hand side of
that equation must have an absolute value less than or equal to 1, and applying the definition of the
eccentricity vector in Equation (16), along with appropriate trigonometric identities, the maximum

change in w can be determined from:
20V,
Sin Awpmae = Ve [o (32)
€o G

The fuel cost of an individual maneuver can be computed from the AV given in Equation (25)
via the rocket equation:

Am = Mpre_burn (1 _ e—AVt/g-Isp) (33)

where g represents standard gravity at the Earth’s surface, and I,, represents the specific impulse of
the on-board engines. Finally, the burn duration can be determined by:

mAV;

At =
T

€]
where the bar over the m indicates that the average value of the spacecraft mass during the course of

the burn should be used, and 7 represents the total thrust of the engines performing the maneuver.

4. GROUND TRACK ACQUISITION AND MAINTENANCE MANEUVER

4.1 Ground Track Acquisition Maneuver
In general, given an initial distance of the ground track from the desired trace, d,, and calculating

the drift rate, §S as outlined in the previous section, the relative position of the current ground track,
d, can be determined at any point in time:

d(t) = do + (6S)Re(t — 1) (35)
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Table 1. Orbit and spacecraft parameters for the ground track acquisition maneuver.

Initial Ideal Final
Ground Track Shift -35.0 4.8 4.121
Semi-Major Axis(km) 7055.76 7063.27 7063.065
Eccentricity 0.0025 0.0010486 0.001582
Argument of PeriEee(deg) 94.0 90.0 90.356
Spacecraft Mass{_hg) 500 - 498.889
Total Impuisive Thrust(N) 16.7 - 16.7
Specific Impulse(sec) 180.0 - 180.0

-5 \ \
equalor \ do \
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=\

Figure 2. Ground Track Offset.

as shown in Figure 2.

The orbit acquisition phase seeks to reduce both the drift rate of the ground track and its distance
from the ideal path to zero. To accomplish these goals, impulsive velocity increments in the radial
and transverse directions are applied.

A ground track acquisition maneuver simulation is performed using spread sheet program that
is developed using the modeling in previous section. Only in-track maneuvers are executed for
changing semi-major axis, eccentricity, and argument of perigee. Table 1 shows the initial, ideal
and final orbit parameters in the simulation. The ideal ground track shift, 4.8 km, in Table 1 is
derived from the assumption that the ground track should be maintained within +5 km. The control
bandwidth of the ground track is different for the spacecraft mission. Prasad et al. (1989) mentioned
+14.8 km band for IRS program and Rosengren (1993) analyzed +1 km band for ERS-1 mission.

Five in-plane maneuvers are executed for achieving the final orbit parameters in Table 1. Each
maneuver is executed in every 28-orbit revolution interval. Figure 3 shows the change of the semi-
major axis during the orbit acquisition. There are small orbital decays in each 28-orbit revolution
intervals. Figure 4 shows the change of the ground track shift during the orbit acquisition. The final
ground track is 4.1 km east of the nominal ground track and this position is good for starting of
routine ground track maintenance maneuver within &5 km band.

Figure 5 shows the change of eccentricity during ground track acquisition. The eccentricity is
approached to the ideal frozen eccentricity throughout the maneuvers. Figure 6 shows the change of
argument of perigee. The argument of perigee is decreased during each maneuver interval of 28-orbit
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Table 2. Summary of the orbit acquisition maneuver.

Burn No.(rev.)  ASMA(km) AV(m/s) Am(kg) Burn Time(s) w + f (deg)

1(28 1.544 0.823 0.233 24.6 229.788
2(28 1.381 0.735 0.208 22,0 250.246
3(28 2918 1.553 0.439 46.4 257.454
4(28 1.209 0.643 0.182 19.2 242.453
5(28 0.322 0.171 0.048 5.1 203.560
Total 5(140) 7.374 3.926 1.111 117.3 -
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Figure 3. Change of semi-major axis. Figure 4. Change of ground track shift.
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Figure S. Change of eccentricity. Figure 6. Change of argument of perigee.

revolution. The argument of perigee is also approached to the ideal frozen mean argument of
perigee of 90°. The relation between frozen orbit eccentricity and argument of perigee, and the time
variations of the frozen orbit parameters due to perturbations were analyzed by Lee & Lee (1997).

Table 2 shows the summary of the ground track acquisition maneuver. The argument of latitude,
w + f, at the burn time is also shown in Table 2.
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Table 3. Orbital elements and spacecraft parameters.

Parameters Values
Mean Semi-Major Axis(km) 7063.270
Mean Eccentricity 0.0010486
Mean Inclination(deig) 98.127
Mean Argument of Perigee(deg) 90.000
Spacecraft Area(m? 8.250
Spacecraft Mass(kg 400
Drag Coefficient 22
Total Propulsive Thrust(N) 16.7
Specific Impulse(sec) 180

4.2 Ground Track Maintenance Maneuver

As discussed previously, atmospheric drag monotonically removes energy from the orbit, causing
the semi-major axis to decrease continuously. To meet the mission constraints, periodic maneuvers
must be employed to counter this effect. Biasing the initial semi-major axis above the ideal value
yields a longer interval between maneuvers, reducing the frequency of the necessary corrections.

To understand this behavior, consider first that the larger semi-major axis produces a longer
orbital period. Neglecting the relatively small change in the nodal precession rate, the resulting
effect on the ground track is given by Equation (1). The longer period, P,, yields a larger shift in
the ground track, which is measured positive westward. As a result, the ground track initially moves
west relative to the ideal trace. By beginning the maneuver cycle with the actual ground track placed
east of the intended path, and recognizing that atmospheric drag will cause the semi-major axis to
decrease, the motion of the satellite begins to approach to the ideal orbit. Since drag continues to
act, however, the semi-major axis will then fall below the ideal value, thus reversing the drift of the
ground track. Then, the ground track moves to eastward. In that sense, maintaining the ground track
of the LEO satellite within a certain bandwidth is very similar to maintaining the longitude of the
GEO satellite within a certain station-keeping box.

Simulations for ground track maintenance maneuver are performed using spread sheet program
that is developed using the modeling in previous section. The ground track bandwidth is set to +5
km in the simulations and the decay rate of the orbit is changed by setting the different initial air
density. Table 3 shows the orbital elements and spacecraft parameters in the simulation.

Table 4 shows the summary of the ground track maintenance maneuver. Three different values
of the air density are applied and the relating maneuver parameters are derived. The minimum and
maximum air density values are adopted from Cappellari et al. (1976). The initial semi-major axis
should be set to different value with respect to the decay rate of the orbit.

Figure 7 shows the profiles of the ground tracks for three different air drag values. The ground
track initially evolves to westward from the eastern limit to the western limit, and then, evolves
to eastward from the western limit to the eastern limit. Then, another ground track maintenance
maneuver, i.e., orbit raising maneuver should be executed at eastern limit position. The ground track
shift is directly related to the semi-major axis. Figure 8 shows the profiles of the semi-major axis for
the three different cases. The maneuver cycle times are 13, 21, and 41 days each for the maximum,
nominal, and minimum air drag. The more air density effects, the more AV is required for the ground



Minimum _ Nominal Maximum
Air Densnty(Kg/m3) 2.63E-14  1.00E-13  2.69E-13
Initial Semi-Major Axis(km) 7063.580  7063.476  7063.378
Initial Ground Track Shlft(km) 4.8 4.8 4.8
Initial Decay Rate(m/day) -5.5 -20.8 -56.0
Initial Drift Rate(kmE/rev) -0.063 -0.121 -0.181
Final Semi- Mal]or Axis(km) 7063.159  7063.060  7062.908
Maneuver Cycle(day) 13 21 41
Required Aa(km 0.219 0416 0.672
Required AV (m/sec) 0.116 0.221 0.357
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Table 4. Summary of ground track maintenance maneuver.
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Figure 7. Profile of the Ground Track Shift.
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Figure 8. Profile of the Semi-major axis.

track maintenance.

When the actual ground track returns to the initial distance from the desired path, a maneuver is
performed to reinitiate the cycle. This maneuver simply returns the drift rate to its initial value and
direction by increasing the semi-major axis to the biased value. Thus, the velocity increment required
can be found from Equations (13) and (23). As in the orbit acquisition case, only a transverse impulse
is needed.

Since the mission orbit is frozen, however, the mean eccentricity and argument of perigee remain
unaffected by perturbations. Consequently, the maintenance maneuver should be performed at a
location such that the orientation of the eccentricity vector is unaffected. From Equation (30), it
is clear that this can occur only if the burn takes place at perigee (f, = 0°) or at apogee (f, =
180°). The possible post-burn eccentricities can be determined using Equations (27) and (28), and
the more appropriate apsis selected for the maneuver. The fuel use and duration can be calculated
from Equations (34) and (35).

5. CONCLUSIONS

The strategy developed in this paper to determine the burn parameters for ground-track ac-
quisition and maintenance has several advantages, including speed and simplicity. The use of the
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linearized non-singular Lagrange equations allows analytical determination of the burn location
without iteration. The implementation presented in the SEASAT-A analysis by Cutting et al. (1978)
requires a priori knowledge of the eccentricity change. Since the primary goal of both the acquisition
and maintenance phases involves the adjustment of the semi-major axis, the post-burn eccentricity
becomes a consequential rather than a determinant factor. Thus, by returning to the basic model
developed by Jones (1976), the correction burn location and AV can be derived from the parameters
that the spacecraft mission analyst wishes to control, namely the drift rate of the ground track and
the argument of perigee.

The primary limitation of the model also stems from the linearization of the non-singular
Lagrange equations. The AV associated with the desired change in the semi-major axis exists in
the transverse direction only. While reasonable, this assumption implies that the burn occurs while
the spacecraft points in the nadir (anti-radial) direction, and that the along-track thrusters act along
a line perpendicular to that direction. Non-zero pitch or yaw angles during actual burns will require
slightly larger velocity increments than those calculated by this model.

Finally, the maneuvers planned by applying this strategy to the acquisition and maintenance
of the mission orbit should serve as a baseline. Used as a pre-flight analysis and planning tool,
this approach provides a comprehensive overview of the burn sequencing required to achieve the
target orbit and the dynamics affecting the interval between maintenance maneuvers. Given the
analytical nature of the models and the use of mean orbital elements, however, individual burns
should ultimately be planned using higher fidelity numerical techniques. Higher fidelity numerical
simulation will be performed later as a further study.
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