• Title/Summary/Keyword: analytical and numerical methods

Search Result 395, Processing Time 0.027 seconds

Contaminant transport through porous media: An overview of experimental and numerical studies

  • Patil, S.B.;Chore, H.S.
    • Advances in environmental research
    • /
    • v.3 no.1
    • /
    • pp.45-69
    • /
    • 2014
  • The groundwater has been a major source of water supply throughout the ages. Around 50% of the rural as well as urban population in the developing countries like India depends on groundwater for drinking. The groundwater is also an important source in the agriculture and industrial sector. In many parts of the world, groundwater resources are under increasing threat from growing demands, wasteful use and contamination. A good planning and management practices are needed to face this challenge. A key to the management of groundwater is the ability to model the movement of fluids and contaminants in the subsurface environment. It is obvious that the contaminant source activities cannot be completely eliminated and perhaps our water bodies will continue to serve as receptors of vast quantities of waste. In such a scenario, the goal of water quality protection efforts must necessarily be the control and management of these sources to ensure that released pollutants will be sufficiently attenuated within the region of interest and the quality of water at points of withdrawal is not impaired. In order to understand the behaviour of contaminant transport through different types of media, several researchers are carrying out experimental investigations through laboratory and field studies. Many of them are working on the analytical and numerical studies to simulate the movement of contaminants in soil and groundwater of the contaminant transport. With the advent of high power computers especially, a numerical modelling has gained popularity and is indeed of particular relevance in this regard. This paper provides the state of the art of contaminant transport and reviews the allied research works carried out through experimental investigation or using the analytical solution and numerical method. The review involves the investigation in respect of both, saturated and unsaturated, porous media.

Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay

  • Silvestri, Vincenzo;Abou-Samra, Ghassan
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-37
    • /
    • 2012
  • This paper presents the results of analytical and numerical analyses of the effects of performing a pressuremeter test or driving a pile in clay. The geometry of the problem has been simplified by the assumptions of plane strain and axial symmetry. Pressuremeter testing or installation of driven piles has been modelled as an undrained expansion of a cylindrical cavity. Stresses, pore water pressures, and deformations are found by assuming that the clay behaves like normally consolidated modified Cam clay. Closed-form solutions are obtained which allow the determination of the principal effective stresses and the strains around the cavity. The analysis which indicates that the intermediate principal stress at critical state is not equal to the mean of the other two principal stresses, except when the clay is initially isotropically consolidated, also permits finding the limit expansion and excess pore water pressures by means of the Almansi finite strain approach. Results are compared with published data which were determined using finite element and finite difference methods.

Nonlinear vibration of conservative oscillator's using analytical approaches

  • Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.671-682
    • /
    • 2016
  • In this paper, a new analytical approach has been presented for solving nonlinear conservative oscillators. Variational approach leads us to high accurate solution with only one iteration. Two different high nonlinear examples are also presented to show the application and accuracy of the presented approach. The results are compared with numerical solution using runge-kutta algorithm in different figures and tables. It has been shown that the variatioanl approach doesn't need any small perturbation and is accurate for nonlinear conservative equations.

Heat Transfer Analysis in a Straight Fin of Trapezoidal Profile by the Heat Balance Integral Method (열평형적분법에 의한 사다리꼴단면의 직선휜에서의 열전달해석)

  • Jo Jong-Chull;Cho Jin-Ho
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.11 no.3
    • /
    • pp.1-8
    • /
    • 1982
  • When exact analytical solutions to certain type of heat conduction problems are quite cumbersome or not obtainable, it is important to introduce approximate analytical methods which are simple and useful compared with numerical methods. In this study, therefore, the Heat Balance Integral Method is applied to analysis of steady-state conduction in a straight fin of trapezoidal profile, and the two-dimensional temperature distribution in the fin and the approximate fin efficiency are obtained. Results are compared with those by the one- dimensional analysis and two-dimensional numerical analysis for a wide range of Biot numbers. It is shown that the two-dimensional temperature distribution obtained by the integral method is in good agreement with that by the finite element method at Biot numbers for which the result by the one-dimensional analysis is unreliable.

  • PDF

Study on the Semi-Analytical Ice Load Calculation Methods for the Ice-Breaking Simulation (쇄빙시뮬레이션을 위한 반해석적 빙하중 계산법 고찰)

  • Kim, Jeong-Hwan;Jang, Beom-Seon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.353-364
    • /
    • 2020
  • This paper presents the semi-analytical ice load calculation methods that are useful to simulate the ice-breaking process. Since the semi-analytical methods rely on the previously developed closed form equations or numerical analysis results, the user's exact understanding for the equations must be supported in order to use the methods properly. In this study, various failure modes of ice such as local crushing, in-plane splitting failure, out-of-plane bending failure and radial or circumferential cracking with rotation of the broken ice floe are considered. Based on the presented methods, the fracture modes were evaluated according to the size and thickness of ice. In addition, time series analysis for the ice-breaking process was performed on several ice conditions and the results were analyzed.

Effect of cable stiffness on a cable-stayed bridge

  • Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • Cables are used in many applications such as cable-stayed bridges, suspension bridges, transmission lines, telephone lines, etc. Generally, the linear relationship is inadequate to present the behavior of cable structure. In finite element analysis, cables have always been modeled as truss elements. For these types of model, the nonlinear behavior of cables has been always ignored. In order to investigate the importance of the nonlinear effect on the structural system, the effect of cable stiffness has been studied. The nonlinear behavior of cable is due to its sag. Therefore, the cable pretension provides a large portion of the inherent stiffness. Since a cable-stayed bridge has numerous degrees of freedom, analytical methods at present are not convenient to solve this type of structures but numerical methods may be feasible. It is necessary to provide a different and more representative analytical model in order to present the effect of cable stiffness on cable-stayed bridges in numerical analysis. The characteristics of cable deformation have also been well addressed. A formulation of modified modulus of elasticity has been proposed using a numerical parametric study. In order to investigate realistic bridges, a cable-stayed bridge having the geometry similar to that of Quincy Bayview Bridge is considered. The numerical results indicate that the characteristics of the cable stiffness are strongly nonlinear. It also significantly affects the structural behaviors of cable-stayed bridge systems.

Analytical Solution for Harbour Oscillations (항내응답에 대한 해석해)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.72-80
    • /
    • 1996
  • Two analytical solutions for oscillations in a rectangular harbour are presented. In this paper, the correct solution is obtained by use of matched asymptotic expansion method, which was first derived by Mei(1989). The other solution derived from eigenfunction expansion method is also presented, in which more accurate numerical integration is employed. In order to check the solutions, amplification factors inside the harbor are calculated and plotted by both analytical methods and numerical boundary integral equation method.

  • PDF

Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach

  • Singh, Agyapal;Kumari, Poonam
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.55-89
    • /
    • 2020
  • For the first time, an accurate analytical solution, based on coupled three-dimensional (3D) piezoelasticity equations, is presented for free vibration analysis of the angle-ply elastic and piezoelectric flat laminated panels under arbitrary boundary conditions. The present analytical solution is applicable to composite, sandwich and hybrid panels having arbitrary angle-ply lay-up, material properties, and boundary conditions. The modified Hamiltons principle approach has been applied to derive the weak form of governing equations where stresses, displacements, electric potential, and electric displacement field variables are considered as primary variables. Thereafter, multi-term multi-field extended Kantorovich approach (MMEKM) is employed to transform the governing equation into two sets of algebraic-ordinary differential equations (ODEs), one along in-plane (x) and other along the thickness (z) direction, respectively. These ODEs are solved in closed-form manner, which ensures the same order of accuracy for all the variables (stresses, displacements, and electric variables) by satisfying the boundary and continuity equations in exact manners. A robust algorithm is developed for extracting the natural frequencies and mode shapes. The numerical results are reported for various configurations such as elastic panels, sandwich panels and piezoelectric panels under different sets of boundary conditions. The effect of ply-angle and thickness to span ratio (s) on the dynamic behavior of the panels are also investigated. The presented 3D analytical solution will be helpful in the assessment of various 1D theories and numerical methods.

Large-span Tunnel Support Design supplemented by Analytical Methods (대단면터널 특성을 고려한 지보설계 개선방안 연구)

  • Jeong, Jae-Ho;Lee, Hee-Suk;Heo, Jong-Seok;Yoon, Sang-Gil
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.949-959
    • /
    • 2006
  • Despite of the popularity of using empirical methods for support design, empirical rules suffer from the inherent problem of providing no indication of the safety degree of the design. For the support design of large span tunnel, it was considered that the empirical design guidelines should be augmented by more explicit design methods. This paper presents an overview of the analytical support design methodology that is used to refine initial empirical recommendations. The initial support design supplemented by analytical methods is validated by probabilistic and deterministic approach applied to stress-induced and structurally controlled gravity-driven instability problem each. As a result, the extent of the potential failure zone is sorted out and numerical parametric studies were performed to gain insight into the overall behavior of tunnel in the potential failure zone. Concequently, it was decided that additional conservation techniques have to be planed as a reserved support pattern.

  • PDF

Mathematical Modeling of the Roundness for Plastic Injection Mold Parts with Complicated 3D curvatures (복잡한 3차원 곡면을 가지는 플라스틱 사출 성형품을 위한 진원도의 수학적 모델링)

  • Yoon, Seon Jhin
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.6-11
    • /
    • 2019
  • In this study, we constructed the mathematical model to evaluate the roundness for plastic injection mold parts with complicated 3D curvatures. Mathematically we started off from the equation of circle and successfully derived an analytical solution so as to minimize the area of the residuals. On the other hand, we employed the numerical method the similar optimization process for the comparison. To verify the mathematical models, we manufactured and used a ball valve type plastic parts to apply the derived model. The plastic parts was fabricated under the process conditions of 220-ton injection mold machine with a raw material of polyester. we experimentally measured (x, y) position using 3D contact automated system and applied two mathematical methods to evaluated the accuracy of the mathematical models. We found that the analytical solution gives better accuracy of 0.4036 compared to 0.4872 of the numerical solution. The numerical method however may give adaptiveness and versatility for optional simulations such as a fixed center.