• Title/Summary/Keyword: analytical and numerical analyses

Search Result 218, Processing Time 0.025 seconds

Stochastic buckling quantification of porous functionally graded cylindrical shells

  • Trinh, Minh-Chien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.651-676
    • /
    • 2022
  • Most of the experimental, theoretical, and numerical studies on the stability of functionally graded composites are deterministic, while there are full of complex interactions of variables with an inherently probabilistic nature, this paper presents a non-intrusive framework to investigate the stochastic nonlinear buckling behaviors of porous functionally graded cylindrical shells exposed to inevitable source-uncertainties. Euler-Lagrange equations are theoretically derived based on the three variable refined shear deformation theory. Closed-form solutions for the shell buckling loads are achieved by solving the deterministic eigenvalue problems. The analytical results are verified with numerical results obtained from finite element analyses that are conducted in the commercial software ABAQUS. The non-intrusive framework is completed by integrating the Monte Carlo simulation with the verified closed-form solutions. The convergence studies are performed to determine the effective pseudorandom draws of the simulation. The accuracy and efficiency of the framework are verified with statistical results that are obtained from the first and second-order perturbation techniques. Eleven cases of individual and compound uncertainties are investigated. Sensitivity analyses are conducted to figure out the five cases that have profound perturbative effects on the shell buckling loads. Complete probability distributions of the first three critical buckling loads are completely presented for each profound uncertainty case. The effects of the shell thickness, volume fraction index, and stochasticity degree on the shell buckling load under compound uncertainties are studied. There is a high probability that the shell has non-unique buckling modes in stochastic environments, which should be known for reliable analysis and design of engineering structures.

A Study on Improvement of the Use and Quality Control for New GNSS RO Satellite Data in Korean Integrated Model (한국형모델의 신규 GNSS RO 자료 활용과 품질검사 개선에 관한 연구)

  • Kim, Eun-Hee;Jo, Youngsoon;Lee, Eunhee;Lee, Yong Hee
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.251-265
    • /
    • 2021
  • This study examined the impact of assimilating the bending angle (BA) obtained via the global navigation satellite system radio occultation (GNSS RO) of the three new satellites (KOMPSAT-5, FY-3C, and FY-3D) on analyses and forecasts of a numerical weather prediction model. Numerical data assimilation experiments were performed using a three-dimensional variational data assimilation system in the Korean Integrated Model (KIM) at a 25-km horizontal resolution for August 2019. Three experiments were designed to select the height and quality control thresholds using the data. A comparison of the data with an analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) integrated forecast system showed a clear positive impact of BA assimilation in the Southern Hemisphere tropospheric temperature and stratospheric wind compared with that without the assimilation of the three new satellites. The impact of new data in the upper atmosphere was compared with observations using the infrared atmospheric sounding interferometer (IASI). Overall, high volume GNSS RO data helps reduce the RMSE quantitatively in analytical and predictive fields. The analysis and forecasting performance of the upper temperature and wind were improved in the Southern and Northern Hemispheres.

Dynamic response of concrete gravity dams using different water modelling approaches: westergaard, lagrange and euler

  • Altunisik, A.C.;Sesli, H.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.429-448
    • /
    • 2015
  • The dams are huge structures storing a large amount of water and failures of them cause especially irreparable loss of lives during the earthquakes. They are named as a group of structures subjected to fluid-structure interaction. So, the response of the fluid and its hydrodynamic pressures on the dam should be reflected more accurately in the structural analyses to determine the real behavior as soon as possible. Different mathematical and analytical modelling approaches can be used to calculate the water hydrodynamic pressure effect on the dam body. In this paper, it is aimed to determine the dynamic response of concrete gravity dams using different water modelling approaches such as Westergaard, Lagrange and Euler. For this purpose, Sariyar concrete gravity dam located on the Sakarya River, which is 120km to the northeast of Ankara, is selected as a case study. Firstly, the main principals and basic formulation of all approaches are given. After, the finite element models of the dam are constituted considering dam-reservoir-foundation interaction using ANSYS software. To determine the structural response of the dam, the linear transient analyses are performed using 1992 Erzincan earthquake ground motion record. In the analyses, element matrices are computed using the Gauss numerical integration technique. The Newmark method is used in the solution of the equation of motions. Rayleigh damping is considered. At the end of the analyses, dynamic characteristics, maximum displacements, maximum-minimum principal stresses and maximum-minimum principal strains are attained and compared with each other for Westergaard, Lagrange and Euler approaches.

Experimental and numerical investigation of wire rope devices in base isolation systems

  • Calabrese, Andrea;Spizzuoco, Mariacristina;Losanno, Daniele;Barjani, Arman
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.275-284
    • /
    • 2020
  • The scope of this study is the comparison between experimental results of tests performed on a base isolated building using helical wire rope isolators (WRs), and results of Nonlinear Response History Analyses (NRHAs) performed using SAP 2000, a commercial software for structural analysis. In the first stage of this research, WRs have been tested under shear deformation beyond their linear range of deformation, and analytical models have been derived to describe the nonlinear response of the bearings under different directions of loading. On the following stage, shaking table tests have been carried out on a 1/3 scale steel model isolated at the base by means of curved surface sliders (CSS) and WRs. The response of the structure under ground motion excitation has been compared to that obtained using numerical analyses in SAP 2000. The feasibility of modelling the nonlinear behavior of the tested isolation layer using multilinear link elements embedded in SAP 2000 is discussed in this paper, together with the advantages of using WRs as supplemental devices for CSSs base isolated structures.

Local buckling of reinforcing steel bars in RC members under compression forces

  • Minafo, Giovanni
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.527-538
    • /
    • 2018
  • Buckling of longitudinal bars is a brittle failure mechanism, often recorded in reinforced concrete (RC) structures after an earthquake. Studies in the literature highlights that it often occurs when steel is in the post elastic range, by inducing a modification of the engineered stress-strain law of steel in compression. A proper evaluation of this effect is of fundamental importance for correctly evaluating capacity and ductility of structures. Significant errors can be obtained in terms of ultimate bending moment and curvature ductility of an RC section if these effects are not accounted, as well as incorrect evaluations are achieved by non-linear static analyses. This paper presents a numerical investigation aiming to evaluate the engineered stress-strain law of reinforcing steel in compression, including second order effects. Non-linear FE analyses are performed under the assumption of local buckling. A role of key parameters is evaluated, making difference between steel with strain hardening or with perfectly plastic behaviour. Comparisons with experimental data available in the literature confirm the accuracy of the achieved results and make it possible to formulate recommendations for design purposes. Finally, comparisons are made with analytical formulations available in the literature and based on obtained results, a modification of the stress-strain law model of Dhakal and Maekawa (2002) is proposed for fitting the numerical predictions.

Study of Failure Mode and Static Behavio of Lightweight FRP Bridge Deck System (복합재료 교량 시스템의 정적거동 분석 및 파괴모드에 관한 연구)

  • Jung Woo-Young;Lee Hyung-Kil;An Byoung-Yun;Baek Sang-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.922-927
    • /
    • 2006
  • There is a concern with worldwide deterioration of highway bridges, particularly reinforced concrete. The advantages of fibre reinforced plastic(FRP) composites over conventional materials motivate their use in highway bridges for replacement of structures. Recently, an FRP deck has been installed on a state highway, located in New York State, as an experimental project. In this paper, a systematic approach for analysis of this FRP deck bridge is presented. Multi-step linear numerical analyses have been performed using the finite element method to study the structural behavior and the possible failure mechanism of the FRP deck-superstructure system Deck's self-weight and ply orientations at the interface between steel girders and FRP deck are considered in this study. From this research, the results of the numerical analyses were corroborated with field test results. Analytical results reveal several potential failure mechanism for the FRP deck and truss bridge system The results presented in this study may be used to propose engineering design guideline for new and replacement FRP bridge deck structure.

  • PDF

Performance Analysis of Mixed RF/FSO Dual-hop Transmission with Switch-and-Stay Combining (Switch-and-Stay Combining 기반 Mixed RF/FSO Dual-hop 전송 시스템 성능 분석)

  • Hwang, Kyu-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.4
    • /
    • pp.493-498
    • /
    • 2018
  • In this paper, we provide the performance analyses of a dual-hop amplify-and-forward(AF) relay transmission composed of asymmetric radio-frequence(RF) and free-space optical(FSO) links. In the mixed RF/FSO system, a relay is equipped with two receive antennas for RF signals and one additional transmit antenna for FSO signals. In order to improve a performance of RF link, a switch-and-stay (SSC) diversity technique is applied at the relay which can provide a proper link performance with a low complexity. Specifically, we offer the performance analyses of the proposed system in terms of outage probability and secrecy outage probability. In numerical examples, we compare the system performances with no diversity and selection combining systems and verify our analytical results via computer-based Monte-Carlo simulations.

Analyses of axial forces and displacements for turnout on the bridge (교량 상 분기기 축력 및 변위해석)

  • Kim, In-Jae;Kim, Jeong-Il;Yang, Shin-Choo;Han, Sang-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.311-316
    • /
    • 2007
  • The improvement of speed and ride comfort requires a very horizontally and vertically rigid and non-flexible alignment. It is inevitable to construct many bridges depending on the topography of landscapes and obliged to lay turnouts on the bridges. In that case, special considerations have to be taken into account, i.e. permissible stresses of turnout components and limitations of displacements of bridge and turnouts. In this studies, numerical analyses for turnout/bridge interaction are carried out using commercial program LUSAS. The target of analytical model is the turnout layed near Pyeongrae-Hopyeng station on Kyeongchun line. The lead rail, stock rails, and the bridge are modelled using beam elements. Fasteners and ballast resistances are modelled using bi-linear spring elements. The turnout behaviors are investigated by varying the parameters such as span length of bridge, spring coefficients, and thermal loads.

  • PDF

Optimal Design for Maximum Transmittance of Electromagnetic Wave through Foam Core Sandwich Structures Using Genetic Algorism (유전자 알고리즘을 이용한 폼코어 샌드위치 구조물의 전파 투과성 최적화에 관한 연구)

  • 신현수;전흥재;박근식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.183-186
    • /
    • 2001
  • In this paper, the analytical model to understand the propagation of electromagnetic waves in the foam core sandwich structures was proposed. Using the analytical model, efforts were made to find the optimal stacking sequence of composite skins for maximum transmittance of electromagnetic wave. Numerical analyses of unidirectional composites and foam as a function of incident angle were performed. From the results of analysis, the general tendencies of transmittance of electromagnetic wave through composites and foam were obtained. Based on the general tendencies, optimal stacking sequences of composite skins for the maximum transmittance of electromagnetic wave were found with certain ranges of incident angle using genetic algorithm(GA).

  • PDF

A Study on Uncertainty Analyses of Monte Carlo Techniques Using Sets of Double Uniform Random Numbers

  • Lee, Dong Kyu;Sin, Soo Mi
    • Architectural research
    • /
    • v.8 no.2
    • /
    • pp.27-36
    • /
    • 2006
  • Structural uncertainties are generally modeled using probabilistic approaches in order to quantify uncertainties in behaviors of structures. This uncertainty results from the uncertainties of structural parameters. Monte Carlo methods have been usually carried out for analyses of uncertainty problems where no analytical expression is available for the forward relationship between data and model parameters. In such cases any direct mathematical treatment is impossible, however the forward relation materializes itself as an algorithm allowing data to be calculated for any given model. This study addresses a new method which is utilized as a basis for the uncertainty estimates of structural responses. It applies double uniform random numbers (i.e. DURN technique) to conventional Monte Carlo algorithm. In DURN method, the scenarios of uncertainties are sequentially selected and executed in its simulation. Numerical examples demonstrate the beneficial effect that the technique can increase uncertainty degree of structural properties with maintaining structural stability and safety up to the limit point of a breakdown of structural systems.