• Title/Summary/Keyword: analytic condition

Search Result 410, Processing Time 0.026 seconds

Integral Operator of Analytic Functions with Positive Real Part

  • Frasin, Basem Aref
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.77-85
    • /
    • 2011
  • In this paper, we introduce the integral operator $I_{\beta}$($p_1$, ${\ldots}$, $p_n$; ${\alpha}_1$, ${\ldots}$, ${\alpha}_n$)(z) analytic functions with positive real part. The radius of convexity of this integral operator when ${\beta}$ = 1 is determined. In particular, we get the radius of starlikeness and convexity of the analytic functions with Re {f(z)/z} > 0 and Re {f'(z)} > 0. Furthermore, we derive sufficient condition for the integral operator $I_{\beta}$($p_1$, ${\ldots}$, $p_n$; ${\alpha}_1$, ${\ldots}$, ${\alpha}_n$)(z) to be analytic and univalent in the open unit disc, which leads to univalency of the operators $\int\limits_0^z(f(t)/t)^{\alpha}$dt and $\int\limits_0^z(f'(t))^{\alpha}dt$.

A Study on the Weights of the Condition Evaluation of Rock Slope used in Entropy and AHP Method (AHP 및 엔트로피 기법을 적용한 절리암반비탈면 상태평가항목의 가중치 연구)

  • Seong, Joohyun;Byun, Yoseph
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.61-66
    • /
    • 2016
  • Many cut slopes are located along national roads, there were the collapse of cut slopes. In this study, the weights for condition evaluation of rock slopes was calculated using the entropy method and analytic hierachy process(AHP) method. The entropy analysis was performed using 95 cut slope data, and the AHP analysis was performed by a questionnaire to several expert. The weights based on analysis results were compared with evaluation weights of existing standard. As a result of this study, there was the difference of weights among the analytical methods. Later on, if this study's results is used to improvement current evaluation weights, it will be possible to perform the reliable condition evaluation.

A Study on Thermal Stress in T/G Wall of Containment Building (격납건물 텐던갤러리 벽체의 온도응력에 대한 연구)

  • 김진근;양은익;박영진;송영철;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.193-198
    • /
    • 1998
  • In this study, the change of concrete temperature, strain and thermal stress were measured by using the embedded type concrete gauges in tendon gallery wall of containment building. A finite element analysis was performed to clarify the thermal behavior of concrete. The analytic and test results were investigated to improve the validity of analytic method. According to the test results, concrete temperature, strain and thermal stress were strongly affected by measuring point and environment condition of member. And the thermal stress was developed in the member which was not demoulded at early ages. This is caused by the change of internal temperature and restrained condition. A finite element effectively interpreted the test results by estimating the concrete properties and the site condition.

  • PDF

An Improved Analytic Model for Power System Fault Diagnosis and its Optimal Solution Calculation

  • Wang, Shoupeng;Zhao, Dongmei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.89-96
    • /
    • 2018
  • When a fault occurs in a power system, the existing analytic models for the power system fault diagnosis could generate multiple solutions under the condition of one or more protective relays (PRs) and/or circuit breakers (CBs) malfunctioning, and/or an alarm or alarms of these PRs and/or CBs failing. Therefore, this paper presents an improved analytic model addressing the above problem. It takes into account the interaction between the uncertainty involved with PR operation and CB tripping and the uncertainty of the alarm reception, which makes the analytic model more reasonable. In addition, the existing analytic models apply the penalty function method to deal with constraints, which is influenced by the artificial setting of the penalty factor. In order to avoid the penalty factor's effects, this paper transforms constraints into an objective function, and then puts forward an improved immune clonal multi-objective optimization algorithm to solve the optimal solution. Finally, the cases of the power system fault diagnosis are served for demonstrating the feasibility and efficiency of the proposed model and method.

Analytic Solution to the Spatial Propagation of the Flexible Structures (유연한 구조물의 공간전파에 관한 해석적 해법)

  • Seok, Jin-Yeong;Jeong, Eun-Tae;Kim, Yu-Dan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2040-2047
    • /
    • 2001
  • In this paper, a singularity problem of the state transition matrix is investigated in the spatial propagation when the spatial matrix differential equation is constructed via time finite element analysis. A parametric study shows that the degree of singularity of the state transition matrix depends on the degree of flexibility of the structures. As an alternative to avoid the numerical problems due to the singularity, an analytic solution fur spatial propagation of the flexible structures is proposed. In the proposed method, the spatial properties of the structure are analytically expressed by a combination of transcendental functions. The analytic solution serves fast and accurate results by eliminating the possibility of the error accumulation caused by the boundary condition. Several numerical examples are shown to validate the effectiveness of the proposed methods.

ON THE COMMUTANT OF MULTIPLICATION OPERATORS WITH ANALYTIC POLYNOMIAL SYMBOLS

  • Robati, B. Khani
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.683-689
    • /
    • 2007
  • Let $\mathcal{B}$ be a certain Banach space consisting of analytic functions defined on a bounded domain G in the complex plane. Let ${\varphi}$ be an analytic polynomial or a rational function and let $M_{\varphi}$ denote the operator of multiplication by ${\varphi}$. Under certain condition on ${\varphi}$ and G, we characterize the commutant of $M_{\varphi}$ that is the set of all bounded operators T such that $TM_{\varphi}=M_{\varphi}T$. We show that $T=M_{\Psi}$, for some function ${\Psi}$ in $\mathcal{B}$.

Analytic and Numerical Study for air Bubble Defect of UV-NIL Process (UV-NIL 공정의 기포 결함에 대한 해석적 및 수치적 연구)

  • Seok, Jeong-Min;Kim, Nam-Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.473-478
    • /
    • 2012
  • In this paper, the air bubble formation mechanism in the rectangular and triangular line-and-space pattern during dispensing UV Nanoimprint Lithography (UV-NIL) at an atmospheric condition is studied. To investigate the air bubble formation, an analytic model based on geometric approach and a numerical model based on CFD(computational fluid dynamics) were used in the analysis. It was found in the numerical analysis that every time the flow front passed through a corner of the pattern, it proceeded with a newly formed shape, occurring due to interface reconfiguration, since the flow fronts were formed such that they minimized the surface energy. Moreover, the conditions for the air bubble formation were investigated by applying the analytic analysis based on geometric approach and the numerical analysis. Good overall agreement was found between the analytic and numerical analysis.

Optimal stiffness distribution in preliminary design of tubed-system tall buildings

  • Alavi, Arsalan;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.731-739
    • /
    • 2018
  • This paper presents an optimal pattern for distributing stiffness along a framed tube structure through an analytic equation, which may be used during the preliminary design stage. Most studies in this field are computationally intensive and time consuming, while a hand-calculation method, as presented here, is a more suitable tool for sensitivity analyses and parametric studies. Approach in development of the analytic model is to minimize the mean compliance (external work) for a given volume of material. A variational statement of the problem is made, and a specified deformation-profile is obtained as the necessary condition for a minimum; enforcing this condition, stiffness is then computed. Due to some near-zero values for stiffness, the problem is modified by considering a lower bound constraint. To deal with this constraint, the design domain is assumed to be divided into two zones of constant stiffness and constant curvature; and the problem is restated in terms of these concepts. It will be shown that this methodology allows for easy computation of stiffness through an analytic and dimensionless equation, valid in any system of units. To show practicality of the proposed method, a tubed-system structure with uniform stiffness distribution is redesigned using the proposed model. Comparative analyses of the results reveal that in addition to simplicity of the proposed method, it provides a rather high degree of accuracy for real-world problems.