• Title/Summary/Keyword: analytic and numerical analysis

Search Result 290, Processing Time 0.022 seconds

Linearized instability analysis of frame structures under nonconservative loads: Static and dynamic approach

  • Hajdo, Emina;Mejia-Nava, Rosa Adela;Imamovic, Ismar;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.79-102
    • /
    • 2021
  • In this paper we deal with instability problems of structures under nonconservative loading. It is shown that such class of problems should be analyzed in dynamics framework. Next to analytic solutions, provided for several simple problems, we show how to obtain the numerical solutions to more complex problems in efficient manner by using the finite element method. In particular, the numerical solution is obtained by using a modified Euler-Bernoulli beam finite element that includes the von Karman (virtual) strain in order to capture linearized instabilities (or Euler buckling). We next generalize the numerical solution to instability problems that include shear deformation by using the Timoshenko beam finite element. The proposed numerical beam models are validated against the corresponding analytic solutions.

Electromagnetic Penetration into an Annular Aperture in a Thick Conductor

  • Lee Haeng-Seon
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.3
    • /
    • pp.146-151
    • /
    • 2005
  • Electromagnetic penetration into an annular aperture in a thick conducting plane is investigated with the integral transform and eigen-function expansion method. The solution is analytic and is represented in rapidly-convergent series which is amenable to numerical analysis. Numerical computations shows that apertures with narrow annular gap have sharp transmit power peaks in frequency response.

Numerical Analysis of Laminar Flows in the Two Dimensional Sector Cavity by Finite Analytic Method in Polar Coordinate System (極座標系 有限解析法 에 의한 2次元 부채꼴 캐비티 의 層流流動 解析)

  • 배주찬;강신영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.185-194
    • /
    • 1984
  • The finite analytic method is extended to solve the steady two dimensional Navier-Stokes equation of stream functions and vorticity in polar coordinate system. The method is applied to calculate laminar flows in a sector cavity where the motion is induced by the rotation of the outer wall. Numerical solutions are obtained in the range of Reynolds number 0 to 5000 and aspect ratios 0.50, 1.20, 1.60 and 1.92. The finite analytic method is verfied to be accurate and fast convergent at high Reynolds numbers. It is promising as a numerical method of viscous flows and heat transfer. Flows in sector cavities show different flow structures and formation of secondary vortex with aspect ratios and Reynolds numbers in comparison with rectangular cavities.

Analysis of Sloshing Problem by Numerical Method (수치기법을 이용한 Sloshing 문제의 해석)

  • Y.H. Kim;Y.J. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.33-44
    • /
    • 1992
  • In the present paper, three types of analytic and numerical method are applied to the analysis of sloshing problem. Analytic solution with linear free-surface boundary condition is introduced and numerical methods are used to analyze flued flow trapped in two-and three-dimensional tanks. Source-distribution method is applied to two- and three-dimensional rectangular tanks and sphere tank. Finite difference method is utilized to compute fluid motion and pressure evolution in two dimensional tanks with girders or slopes. Calculated results are compared with those of experiment or other numerical techniques.

  • PDF

Analysis of Broad- Band Grating Filter Response in Integrated Optics (집적 광학용 광대역 격자 필터의 해석)

  • 김언균;신상균
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.6
    • /
    • pp.55-61
    • /
    • 1982
  • An analytic solution for the spectral response of linearly-chirped grating filter is derived, which takes the finite physical length of filter into account. In the usual case of broad-band linearly-chirped grating filter the analytic solution is expressed in terms of elementary functions, by approximating asymptotically the involved parabolic cylinder functions over different ranges of its argument. It is also shown that derived results are general enough to include previously-available approximations as particular cases, and that they agree well with the numerical solutions based upon the Runge-Kutta method.

  • PDF

A study on the estimation of temperature distribution around gas storage cavern

  • Lee Yang;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.238-243
    • /
    • 2003
  • As there are many advantages on underground caverns, such as safety and operation, they can also be used for gas storage purpose. When liquefied gas is stored underground, the cryogenic temperature of the gas will affect the stability of the storage cavern. In order to store the liquefied gas successfully, it is essential to estimate the exact temperature distribution of the rock mass around the cavern. In this study, an analytic solution and a conceptual model that can estimate three-dimensional temperature distribution around the storage cavern are suggested. When calculating the heat transfer within a solid, it is likely to consider the solid as the intersection of two or more infinite or semi-infinite geometries. Therefore heat transfer solution for the solid is expressed by the product of the dimensionless temperatures of the geometries, which are used to form the combined solid. Based on the multi-dimensional transient heat transfer theory, the analytic solution is successfully derived by assuming the cavern shape to be of simplified geometry. Also, a conceptual model is developed by using the analytic solution of this study. By performing numerical experiments of this multi-dimensional model, the temperature distribution of the analytic solution is compared with that of numerical analysis and theoretical solutions.

  • PDF

A Study on the Resistance Welding of Metallic Sandwich Panel : Part 2 - Process Analysis (저항 용접을 이용한 금속 샌드위치 판재 접합에 관한 연구 : Part 2 - 공정해석)

  • Lee Sang-Min;Kim Jin-Beom;Na Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.55-60
    • /
    • 2005
  • In part 1. optimal process parameters such as thickness of stopper and welding time are achieved to produce high strength ISB(Inner Structured and Bonded) panels. Developed process is different from the usual resistance welding process in the number of points welded at a time. In part 2, Numerical modeling for this new process is proposed and the variation of contact area with respect to the gap of electrodes is studied through FE analyses, Besides, it is tried to figure out the welding nugget formation and proper distance between welding points. FE analytic results show that inner structures are melted more than skin plate, and current distribution between points to be welded can be controlled by distance welding points. Comparison of some FE analytic results with corresponding experimental results could confirm the validity of the proposed numerical modeling.

Acoustic Scattering Holography and Analysis of Its Errors (산란 음향 홀로그래피의 기본 이론 및 오차 해석)

  • 이상협;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.292-292
    • /
    • 2004
  • There are many difficulties to get the scattered field generated by obstacle which has arbitrary shape or irregular surface impedance by using analytic solution or numerical methods. In this study, we propose experimental method of acoustic scattering holography that can predict the far-field scattered field based on nearfield measurements. First of all, we express scattered field using K-H integral equation and compare the differences of which green's function we use. Also we consider analytic solution of scattered field by infinite cylinder to analysis for the errors due to apply cylinderical holography. So the errors which caused by holography due to frequency (ka) and microphone spacing are also analyzed by numerical simulation.

  • PDF

Characteristics Analysis Eddy Current Sensor Using by Numerical Analysis (수치해석을 이용한 와전류센서의 특성해석)

  • Choi, Duck-Su;Lee, Hyang-Beom;Na, Eun-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1000-1002
    • /
    • 2003
  • The characteristics of eddy current sensor has been analyzed by using numerical analysis which is performed by modeling eddy current sensor and analytic object into three-dimension axis-symmetry in this paper. The eddy current sensor is modeled as cylindrical shape with variation of inside and outside diameter and frequency range between 1[kHz] and 1[MHa] for numerical analysis. The value of impendence on eddy current sensor depending on frequency variation was calculated through numerical analysis. The characteristics of eddy current sensor can be studied by normalized impendence which is gained from the calculated impendence. Therefore, sensitivity of eddy current sensor depending on frequency, inside and outside diameter can be known by investigating diameter of half circle impendence and its locus.

  • PDF

Electric Field Analysis Using Three Dimensional Boundary Integral Equation Method (3차원 경계적분방정식법을 이용한 정전장 해석)

  • Kim, Jae-Hong;Kim, Dong-Hun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.828-830
    • /
    • 2000
  • This paper describes BIEM(Boundary Integral Equation Method) for computation of three dimensional electric field distribution and numerical method that an equivalent charge density is unknown variable. After computing numerically the surface charge distribution. the distribution of both potential and electric field are obtained. Finally, this numerical method is applied to the concentric sphere and the coaxial cylindrical model and numerical result is compared to the analytic solution.

  • PDF