• Title/Summary/Keyword: analyte types

Search Result 11, Processing Time 0.028 seconds

Responses of Chloramphenicol Immunosensor to Analyte Types

  • PARK , IN-SEON;KIM, DONG-KYUNG;KIM, NAM-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1157-1162
    • /
    • 2004
  • A well-holder type piezoelectric chloramphenicol (CAP) immunosensor which was prepared by binding an anti­CAP antibody to the chemisorbed monolayers of various thiol or sulfide compounds over the gold electrode surface of quartz crystals through a carboxyl-amine coupling procedure, using the activation with l-ethyl- 3-(3-dimethylarninopropyl)carbodiimide­HCl and N-hydroxysulfosuccinimide, was determined for its responses to CAP, CAP succinate, and water-soluble CAP. The reaction phase used in the well holder was 0.01 M phosphate buffer (pH 7.4), and the solvent for analyte dissolution varied according to the solubility of the individual analyte. The analyte detection which was indicated by a steady-state frequency shift was finished within 10 min, except for CAP dissolved in methanol. The responses of CAP succinate and water-soluble CAP in the reaction phase were very stable, while a minute fluctuation was found with CAP.

Influence of Alkali Metal Cation Type on Ionization Characteristics of Carbohydrates in ESI-MS

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1996-2000
    • /
    • 2009
  • Alkali metal salts were introduced to enhance the ionization efficiency of glucose and maltooligoses in electrospray ionization-mass spectrometry (ESI-MS). A mixture of the same moles of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose was used. Salts of lithium, sodium, potassium, and cesium were employed as the cationizing agent. The ionization efficiency varied with the alkali metal cation types as well as the analyte sizes. Ion abundance distribution of the [M+$cation]^+$ ions of the carbohydrates varied with the fragmentor voltage. The maximum ion abundance at low fragmentor voltage was observed at maltose, while the maximum ion abundance at high fragmentor voltage shifted to maltotriose or maltotetraose for Na, K, and Cs. Variation of the ionization efficiency was explained with the hydrated cation size and the binding energy of the analyte and alkali metal cation.

Comparison of the Reflectance and the Absoription Spectrometries Using the Combined Spectrometer (복합분광분석장치를 사용한 반사분광분석과 흡수분광분석의 비교)

  • Hwang, Hoon;Jung, Se Hui;Lee, Kyung soo
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.1
    • /
    • pp.45-50
    • /
    • 2001
  • A combined spectrometer which could function as either the absorption spectrometer or the reflectance spectrometer was built and used for the comparison of the applicabilities of the two types of spectrometers. According to the results the sensitivity of the reflectance spectrometry was found to be useful for the quantitative analysis when the concentration of the analyte was too low or the molar absorptivity of the analyte was too small for one to perform the quantitative analysis using the absorption spectrometry.

  • PDF

Optical waveguide sensors using optical birefringence of evanescent fields (소산파의 복굴절을 이용한 광 도파관 센서)

  • Son, K.S.;Lee, H.Y.;Kim, W.K.;Lee, S.S.;Park, S.S.;Kwon, S.W.;Lee, E.C.;Park, J.W.;Ju, H.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.309-310
    • /
    • 2008
  • Polymer optical waveguides are fabricated with high-index materials deposited to strengthen exciations of evanescent field whose birefringence is utilized for optical sensing. Optical sensing properties are examined as a function of time, using different types of analyte solutions to extract noise-free signal induced by evanescent field birefringence. It is observed that sensing signal can be free of initial noise that may obscure real signal recognition, when glycerol is used for sensing characterization, due to slow accumulation process following adsorption of analyte material onto the sensing surface of the waveguide.

  • PDF

Analysis of Agrochemical Residues in Tobacco Using QuEChERS Method by GC-MS/MS

  • Lee, Jeong-Min;Jang, Gi-Chul;Hwang, Keon-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.132-139
    • /
    • 2007
  • This study was performed to apply the more rapid and accurate sample preparation, and the high selectivity and sensitivity of the analyte detection by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). QuEChERS (quick, easy, cheap, effective, rugged and safe) method was validated for 49 agrochemicals in the CORESTA Agrochemical Advisory Committee guide and amenable to GC-MS/MS determination. In QuEChERS method, the effects of sorbents (PSA, $C_{18}$ and GCB) and matrix of the analytes in tobacco types (flue-cured, burley and oriental) were investigated. MS/MS acquisition provided high specificity and selectivity for agrochemicals and low limit of quantification. QuEChERS by using PSA alone and the matrix-matched standards gave good recoveries and RSD values in three types of tobaccos. QuEChERS method was no needed to be complex clean-up procedure and would be used as the fast and easy method for agrochemical residue analysis in tobacco.

Study on the Effect of the Electrode Structure of an ITO Nanoparticle Film Sensor On Operating Performance (ITO Nanoparticle Film을 이용한 센서의 전극 구조가 동작 성능에 미치는 영향에 대한 연구)

  • An, Sangsu;Noh, Jaeha;Lee, Changhan;Lee, Sangtae;Seo, Dongmin;Lee, Moonjin;Chang, Jiho
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.90-95
    • /
    • 2022
  • The effect of the structure of an ITO nanoparticle film sensor on its performance was studied. A printed ITO film (P-ITO film) was fabricated on a flexible polyethylene terephthalate (PET) substrate, and the contact resistance of the electrode and sensor response change were clarified according to the detection position. The contact resistance between Ag and P-ITO was observed to be -204.4 Ω using the transmission line method (TLM), confirming that a very good ohmic contact is possible. In addition, we confirmed that the contact position of the analyte had a significant influence on the response of the sensor. Based on these results, the performance of the four types of sensors was compared. Consequently, we observed that 1) optimizing the resistance of the printed film, 2) optimizing the electrode structure and analyte input position, and 3) optimizing the electrode area are very important for fabricating a metal oxide nanoparticle (MONP) sensor with optimal performance.

Liquid Chromatography of Aromatic Sulfonic Acids by Tetramethylammonium Bromide (Tetramethylammonium Bromide를 이용한 방향족 술폰산들의 액체크로마토그래피)

  • Oh, Hae-Beom
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.9
    • /
    • pp.793-799
    • /
    • 1993
  • Ion-pair model was predominated over ion-interaction model in the retention mechanism of analytes when tetramethylammonium bromide (TMAB) was used as a counter-ion in the investigation of aromatic sulfonic acids on the reversed-phase liquid chromatography by $C_{18}$ column as a stationary phase. The capacity factors of analytes were influenced by the type and concentration of counter-ions, concentrations of methanol and co-anion, types and position of functional group, and the pH mobile phase. Components of analyte mixture could be separated under the optimum conditions by this method.

  • PDF

Chemical Sensors Based on Distributed Bragg Reflector Porous Silicon Smart Particles

  • Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • Sensing characteristics for porous smart particle based on DBR smart particles were reported. Optically encoded porous silicon smart particles were successfully fabricated from the free-standing porous silicon thin films using ultrasono-method. DBR PSi was prepared by an electrochemical etch of heavily doped $p^{++}$-type silicon wafer. DBR PSi was prepared by using a periodic pseudo-square wave current. The surface-modified DBR PSi was prepared by either thermal oxidation or thermal hydrosilylation. Free-standing DBR PSi films were generated by lift-off from the silicon wafer substrate using an electropolishing current. Free-standing DBR PSi films were ultrasonicated to create DBR-structured porous smart particles. Three different surface-modified DBR smart particles have been prepared and used for sensing volatile organic vapors. For different types of surface-modified DBR smart particles, the shift of reflectivity mainly depends on the vapor pressure of analyte even though the surfaces of DBR smart particles are different. However huge difference in the shift of reflectivity depending on the different types of surface-modified DBR smart particles was obtained when the vapor pressures are quite similar which demonstrate a possible sensing application to specify the volatile organic vapors.

A comparison of desorption efficiency by types of solvent for polar and non-polar organic compounds collected on activated charcoal tube (활성탄관에 포집된 극성 및 비극성 유기용제 분석시 탈착용매 종류에 따른 탈착효율 비교)

  • Son, Yonjoo;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.1
    • /
    • pp.3-18
    • /
    • 1997
  • This study was conducted to evaluate desorption efficiencies by types of desorption solvent for polar and non-polar organic compounds collected on activated charcoal tubes. Analytes tested were toluene, m-xylene, isobutyl alcohol, n-butyl alcohol, cellosolve acetate, and butyl cellosolve. Three different concentration levels of spiked sample were made. Types of cosolvent mixed with the main solvent, $CS_2$, were methanol, pentanol, and dimethylformamide (DMF) and the cosolvent for methylenechloride was methanol. The amounts of cosolvent added to the main solvent were 1, 5, and 10% by volume (v/v%), respectively. The results were as follows: 1. For all mixed solvents except 1% methanol and 1% pentanol with $CS_2$, desorption efficiency significantly increased, compared with that of $CS_2$ alone. 2. Desorption efficiency increased by increasing analyte loading on charcoal tube regardless of mixed solvents used and the material polarity. 3. For all cosolvents mixed with $CS_2$ by 1% and 5% volume, desorption efficiency for non-polar compound was significantly higher than that of polar compound. For the 10% mixed solvents and the methylenechloride mixed with methanol, the results were opposite. 4. The lowest mean percent bias of 4.79% was obtained from the 5% DMF-$CS_2$ mixed solvent, followed by 4.82% from the 10% DMF-$CS_2$ solvent while the highest bias of 23.26% was from the solvent of $CS_2$ alone. Based on the results of this study, in order to increase desorption efficiency, it is recommended to add such cosolvents as methanol, pentanol, and DMF to $CS_2$, preferably 5% by volume for analyzing polar compounds collected in charcoal tubes.

  • PDF

Fabrication of Microneedle Array Using Inclined LIGA Process (경사 LIGA 공정을 이용한 미세 바늘 어레이의 제작)

  • Moon, Sang-Jun;Lee, Seung-S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1871-1876
    • /
    • 2004
  • We demonstrate a novel fabrication technology for the microneedle array that can be used in the medical test field, which is transdermal drug delivery and blood analyte sampling. Previous researchers have used silicon-processed micromachining, a reactive ion etching, and molding techniques for the fabrication of microneedle array. However, these fabrication techniques have somewhat limitations apply to the microneedle array fabrication according to its application. Inclined LIGA process is suggested to overcome these problems. This process provides easier, sharper and longer out-of-plane microneedle array structure than conventional silicon-processed fabrication method did. Additionally, because of the advantage of the LIGA process based on mold fabrication for mass production, the polymer, PMMA(PolyMethylMethAcrylate), based microneedle array is useful as the mold base of nickel electroplating process; on the other hand, silicon-processed microneedle array is used in itself. In this research, we fabricate different types of out-of-plane microneedle array, which have different shape of tip, base and hole structure, using the inclined LIGA process. The fabricated microneedles have proper mechanical strength, height and sharpness to puncture human hand epidermis or dermis with less pain and without needle tip break during penetrating the skin.