• Title/Summary/Keyword: analysis on the operating condition

Search Result 772, Processing Time 0.027 seconds

Characteristic Analysis of IPMSM for Electric Vehicle Propulsion With Variable Operating Condition Based on Numerical Analysis (운전조건을 고려한 전기자동차 구동용 IPMSM의 수치해석 기반의 제 특성 해석)

  • Im, Chae-Young;Jung, Sang-Yong;Lee, Cheol-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1502-1509
    • /
    • 2011
  • This Paper presents characteristic analysis in terms of interior permanent magnet synchronous motor for electric vehicle propulsion using numerical analysis. Torque ripple analysis, thermal analysis, demagnetization analysis of permanent magnet and mechanical stress analysis with variable operating condition are presented. According to these characteristic analysis, both the performance of motor and possible problems during the operation are examined thoroughly in advance.

Optimization of Operating Condition on Gasification of Ash-free Coal by Using the Sensitivity Analysis of ASPEN Plus (민감도 해석을 통한 무회분 석탄의 가스화 최적 운전조건 도출)

  • Park, Sung-Ho;Jeon, Dong-Hwan;Yun, Sung-Phil;Chung, Seok-Woo;Choi, Ho-Kyung;Lee, Si-Hyun
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.298-305
    • /
    • 2014
  • Ash included in coal can cause environmental pollution and it can decrease efficiency of mass and heat transfer by getting scorched and stick in the facilities operated at high temperature. To solve this problem, a feasibility study on pulverized coal fired power plant and integrated gasification combined cycle (IGCC) using the AFC (Ash-Free Coal) as well as the development to remove the ash from the coal was conducted. In this research, optimization of operating condition was proposed by using sensitivity analysis of ASPEN $Plus^{(R)}$ to apply the coal containing under the 200 ppm ash for integrated gasification combined cycle. Particularly, the coal gasification process was classified as three parts : pyrolysis process, volatile matter combustion process and char gasification process. The dimension and operating condition of 1.5 ton/day class non-slagging gasifier are reflected in the coal gasification process model.

Application Study of Condition Monitoring Technology for Emergency Diesel Generator at Nuclear Power Plant (원자력발전소 비상디젤발전기 상태감시 기술 적용 연구)

  • Choi, K.H.;Park, J.H.;Park, J.E.;Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • The emergency diesel generator(EDG) of the nuclear power plant is designed to supply the power to the nuclear reactor on Station Black Out(SBO) condition. The operation reliability of onsite emergency diesel generator should be ensured by a conditioning monitoring system designed to monitor and analysis the condition of diesel generator. For this purpose, we have developing the technologies of condition monitoring for the wolsong unit 3&4 standby diesel generator including diesel engine performance. In this paper, technologies of condition monitoring for the wolsong standby diesel generator are described about three step. First is for selection of operating parameter for monitoring. Second is for technologies of online condition monitoring, Third is for monitoring of engine performance.

  • PDF

The Canopy Transparency Coating Study of Cockpit Temperature Effect Verification (조종실 온도 영향성 검증을 위한 캐노피 투명체 코팅 연구)

  • Nam, Yongseog;Kim, Taehwan;Kim, Yunhi;Woo, Seongjo;Kim, Myungho
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.42-45
    • /
    • 2008
  • Under the non-operating exposure condition in the hot area, the T-50 cockpit temperature is expected over the requirement according to T-50 environmental criteria. So it is necessary to protect the cockpit from the high temperature condition during the non-operating exposure because the high temperature of the cockpit may result in the cockpit equipment malfunction. In this study, the transparency coating is selected as the method for protecting the cockpit from the high temperature exposure and analyzed the effect on the cockpit heat load attenuation. Some kinds of cockpit coating were reviewed and selected and the analysis was performed about the effect before and after coating application under 1% hot day condition based on the T-50 FSD hot soaking test data. The result of analysis show transparency coating is so effective to attenuate the heat load of T-50 cockpit.

  • PDF

A Method for Reliability Analysis of Process Facilities under Changing Operating Conditions (운전조건이 변화하는 공정설비의 신뢰도 분석기법)

  • Choi Soo Hyoung
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.20-23
    • /
    • 2003
  • The analysis of reliabilities of process facilities often uses models based on the Weibull distribution. The parameters in these models are functions of operating conditions, and determined by experiments. Using these values, we calculate the reliability, mean time to failure, and standard deviation. The conventional method assumes that the operating condition is constant, and thus treats the model parameters as constants. In this paper, a reliability function is proposed which is applicable when the scale parameter is a function of time, and an analysis method based on this is also presented. A case study on a cooling fan resulted in a big difference from the conventional method to which the average operating conditions were applied. The proposed method is also applicable to other process facilities, and expected to effectively take into account the effects of changes in the operating conditions on the reliabilities of the facilities.

  • PDF

A Numerical Analysis on Transient Fuel temperatures in a Military Aircraft under Non-operating Ground Static Condition (지상 정적 상태에서의 항공기내 연료온도변화에 대한 수치해석)

  • 김영준;김창녕
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • A numerical study was performed on the transient fuel temperatures of a military aircraft stationed under non-operating static condition. Numerical calculation was peformed by an explicit method using modified Dufort-Frankel scheme. It was assumed that the non-operating aircraft is subjected to repeated daily cycles of air temperature with the solar radiation and wind speed corresponding to the 1 % hot day ambient condition. And, the aircraft was assumed to be in turbulent flow. The convective heat transfer coefficient for turbulent flow on the flat plate suggested by Eckert was employed to calculate heat transfer between the aircraft surface and the ambience. The energy conservation equation on fuel was used as governing equation for this analysis. As a result of this analysis, the wing tank temperature showed the highest temperature and the largest rate of temperature changes among fuel tanks. The results of this analysis could be used as initial foe] temperatures for analysis of the transient fuel temperatures in various flight missions. Also, this analysis method could be used to analysis and design of an aircraft thermal energy management system.

A Seismic Analysis of Spent Fuel Handling Tool (사용후 핵연료 취급장비의 내진해석)

  • 김성종;이영신;김재훈;김남균
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1210-1215
    • /
    • 2002
  • The spent fuel handling tool is used to handle the refuel bundle and treated by hoist rope on the bridge crane. The new developed handling tool of NPP(Nuclear Power Plant) should be conformed the structural stability under earthquake condition. In this study, the stress and seismic analysis of the handling tool are performed by finite element method. Using the Floor Response Spectrum(FRS) obtained through the time history analysis, the modal and seismic analysis under Operating Basis Earthquake(OBE) and Safe Shutdown Earthquake(SSE) load conditions are carried out. Total 4 cases of different locations of the trolly and the hook are investigated. With the spring-damper element, the tension analysis of hoist rope is conducted. The stability of handling tool under earthquake load condition is conformed with regulatory guide.

  • PDF

Study on Evaluation of the Leak Rate for Steam Valve in Power Plant (발전용 증기밸브 누설량 평가에 관한 연구)

  • Lee, S.G.;Park, J.H.;Yoo, G.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.45-50
    • /
    • 2007
  • Acoustic emission technology is applied to diagnosis the internal leak and operating conditions of the major valves at nuclear power plants. The purpose of this study is to verify availability of the acoustic emission as in-situ diagnosis method. In this study, acoustic emission tests are performed when the pressurized high temperature steam flowed through gate valve(1st stage reheater valve) and glove valve(main steam dump valve) on the normal size of 4 and 8". The valve internal leak diagnosis system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, signal level analysis and RMS(root mean square) analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

The DISNY facility for sub-cooled flow boiling performance analysis of CRUD deposited zirconium alloy cladding under pressurized water reactor condition: Design, construction, and operation

  • Ji Yong Kim;Yunju Lee;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3164-3182
    • /
    • 2023
  • The CRUD on the fuel cladding under the pressurized water reactor (PWR) operating condition causes several issues. The CRUD can act as thermal resistance and increases the local cladding temperature which accelerate the corrosion process. The hideout of boron inside the CRUD results in axial offset anomaly and reduces the plant's shutdown margin. Recently, there are efforts to revise the acceptance criteria of emergency core cooling systems (ECCS), and additionally require the modeling of the thermal resistance effect of the CRUD during the performance analysis. There is an urgent need for the evaluation of the effect of the CRUD deposition on the cladding heat transfer under PWR operating conditions, but the experimental database is very limited. The experimental facility called DISNY was designed and constructed to analyze the CRUD-related multi-physical phenomena, and the performance analysis of the constructed DISNY facility was conducted. The thermal-hydraulic and water chemistry conditions to simulate the CRUD growth under PWR operating conditions were established. The design characteristics and feasibility of the DISNY facility were validated by the MARS-KS code analysis and separate performance tests. In the current study, detailed design features, design validation results, and future utilization plans of the proposed DISNY facility are presented.

A Study on the Effects of Injected Air into the Compressor Exit for the Performances of a Turbocharged Diesel Engine (압축기출구에 공기분사가 터보과급 디젤기관의 성능에 미치는 영향에 관한 연구)

  • 최낙정;이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.796-805
    • /
    • 1995
  • For the purpose of improving performances of a turbocharged diesel engine at low speed, this study investigates the effects of the injected air for the performances and flow characteristics in the intake and exhaust pipes by using the computer simulation with test bed. In the theoretical analysis, the whole flow system, including engine cylinders and intake and exhaust pipes, is calculated numerically by the method of filling and emptying. From the results of this study, the following conclusions may be summarized. Increasing injected air pressure into the pipe of compressor exit brings about the improvement in a performance and flow characteristics of intake and exhaust pipes under full load operating conditions at 1000 rpm of the engine speed, but shows trends of the inferior performances under no load operating conditions at 2000 rpm of the engine speed.