• 제목/요약/키워드: analysis of seepage model

검색결과 99건 처리시간 0.022초

침투력이 터널 막장의 안정성에 미치는 영향 연구 - 모형실험을 중심으로 - (Effect of Seepage Forces on the Tunnel Face Stability - Assessing through Model Tests -)

  • 이인모;안재훈;남석우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.41-48
    • /
    • 2001
  • In this study, two factors are simultaneously considered for assessing tunnel face stability: one is the effective stress acting on the tunnel face calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady-state groundwater flow. The seepage forces calculated by numerical analysis are compared with the results of a model test. From the results of derivations of the upper bound solution with the consideration of seepage forces acting on the tunnel face, it could be found that the minimum support pressure for the face stability is equal to the sum of effective support pressure and seepage pressure acting on the tunnel face. Also it could be found that the average seepage pressure acting on the tunnel face is proportional to the hydrostatic pressure at the same elevation and the magnitude is about 22% of the hydrostatic pressure for the drainage type tunnel and about 28% for the water-proof type tunnel. The model tests performed with a tunnel model had a similar trend with the seepage pressure calculated by numerical analysis. From the model tests it could be also found that the collapse at the tunnel face occurs suddenly and leads to unlimited displacement.

  • PDF

Analytical study on seepage behavior of a small-scale capillary barrier system under lateral no-flow condition

  • Byeong-Su Kim
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.13-27
    • /
    • 2023
  • The model production for large-scale (lateral length ≥ 2.0 m) capillary barrier (CB) model tests is time and cost-intensive. To address these limitations, the framework of a small-scale CB (SSCB) model test under the lateral no-flow condition has been established. In this study, to validate the experimental methodology of the SSCB model test, a series of seepage analyses on the SSCB model test and engineered slopes in the same and additional test conditions was performed. First, the seepage behavior and diversion length (LD) of the CB system were investigated under three rainfall conditions. In the seepage analysis for the engineered slopes with different slope angles and sand layer thicknesses, the LD increased with the increase in the slope angle and sand layer thickness, although the increase rate of the LD with the sand layer thickness exhibited an upper limit. The LD values from the seepage analysis agreed well with the results estimated from the laboratory SSCB mode test. Therefore, it can be concluded that the experimental methodology of the SSCB model test is one of the promising alternatives to efficiently evaluate the water-shielding performance of the CB system for an engineered slope.

침투력을 고려한 토사터널 막장의 안정성 평가방법에 대한 고찰 (Evaluation of Tunnel Face Stability with the Consideration of Seepage Forces)

  • 남석우;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.193-200
    • /
    • 1999
  • Since Broms and Bennermark(1967) suggested the face stability criterion based on laboratory extrusion tests and field observations, the face stability of a tunnel driven in cohesive material has been studied by several authors. And recently, more general solution for the tunnel front is given by Leca and Panet(1988). They adopted a limit state design concept to evaluate the face stability of a shallow tunnel driven into cohesionless material and showed that the calculated upper bound solution represented the actual behavior reasonably well. In this study, two factors are simultaneously considered for assessing tunnel face stability: One is the effective stress acting on the tunnel front calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady state ground water flow. The model tests were performed to evaluate the seepage force acting on the tunnel front and these results were compared with results of numerical analysis. Consequently, the methodology to evaluate the stability of a tunnel face including limit analysis and seepage analysis is suggested under the condition of steady state ground water flow.

  • PDF

Staged Finite Element Modeling with Coupled Seepage and Stress Analysis

  • Lee, Jae-Young
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.703-714
    • /
    • 2010
  • This paper proposes an approach for staged finite element modeling with coupled seepage and stress analysis. The stage modeling is based on the predefined inter-relationship between the base model and the unit stage models. A unit stage constitutes a complete finite element model, of which the geometries and attributes are subject to changes from stage to stage. The seepage analysis precedes the mechanical stress analysis at every stage. Division of the wet and dry zone and the pore pressures are evaluated from the seepage analysis and used in determining input data for the stress analysis. The results of the stress analysis may also be associated with the pore water pressures. For consolidation analysis, the pore pressure and the displacement variables are mixed in a coupled matrix equation. The time marching solution produces the dissipation of excess pore pressure and variation of stresses with passage of time. For undrained analysis, the excess pore pressures are computed from the stress increment due to loading applied in the unit stage and are used in revising the hydraulic head. The solution results of a unit stage are inherited and accumulated to the subsequent stages through the relationship of the base model and the individual unit stages. Implementation of the proposed approach is outlined on the basis of the core procedures, and numerical examples are presented for demonstration of its application.

역경사 현태를 가진 방조제 성토층 단명에서의 침출현상 연구 (A Study on Seepage Characteristics in Case of Seaward Seepage Through Sea-dike)

  • 홍변만
    • 한국농공학회지
    • /
    • 제40권5호
    • /
    • pp.43-51
    • /
    • 1998
  • In design and management of sea0dikes, engineers need to study various transient seepage conditions through dikes not only for the sea water infiltration into dikes due to cyclic rises of sea water level also for the seepage flow out from dikes toward the sea due to cyclic drawdown of sea water level. Characteristics of seepage flow toward the sea from dikes are more complicated than as known and remained unclearly. The case of such seepage flow may be explained by figuring out seepage characteristics in filter as a part of sea-dikes. Filters in most sea-dikes in Korea are inevitably placed with reversely inclined shape due to field construction conditions. Most computer programs for seepage analysis based on the various numerical methods give practically acceptable results, but for the case of reversely inclined section of filters any verification to apply them might be needed. In this study, large scaled model tests were executed to verify and understand seepage flow through earth-filled sea-dikes. The results from numerical analysis and model tests show some remarkable differences in pore pressure distribution under cyclic changes of see level, and some of the results need to be considered in design and construction practices with further study.

  • PDF

防潮堤의 浸透流 解析에 관한 硏究 (Studies on Seepage Flow Analysis through Sea Dike)

  • 김관진;조병진;윤충섭
    • 한국농공학회지
    • /
    • 제34권1호
    • /
    • pp.87-99
    • /
    • 1992
  • A mathematical model, UNSATR which predicts the seepage flow through the body of dike especially under the tidal fluctuation has been developed. This model has been revised from UNSAT2 model which was developed on the basis of the saturated-unsaturated theory by Neuman. UNSATR has been verified and applied to the hydraulic model in order to estimated the seepage quantity, the formation of free water surface etc. The results lead to the following conclusions : 1. Seepage rates between the mathematical model and hydraulic model experiment are very similar to each other both in constant and transient water level conditions. 2. The lapsed time to be steady state of the free water surface becomes late as the tidal levels are relatively low mainly due to the seepage flow from the unsaturated zone of the body of dike. 3. Under the transient state of water levels, owing to the flow from the unsaturated domain, streamlines crossing to the free water surface are found and time lag during a falling tide may allow the free water surface inside the body of dike to stand at a high level than the outside water level. 4. The utility and validity of UNSATR model are convinced when the analyses on seepage problems through the porous embankment of the soil structures on the conditions of the steady and unsteady states are carried out.

  • PDF

해빈내의 흐름장 해석을 위한 침투류 모형 (Seepage Flow Model for Analysis of the Flow Field within the Beach)

  • 김규한;박창근;한상대;편종근
    • 한국해안해양공학회지
    • /
    • 제9권3호
    • /
    • pp.125-131
    • /
    • 1997
  • 해빈 보존공법중 배수층설지 공법의 타당성 분석을 위하여 파랑모형과 침투류모형을 결합한 복합모형을 구성하여 수치실험을 수행하였다 파랑모형으로는 Shuto(1972)의 해석해를 사용하였고, 침투류모형으로는 포화-비포화흐름의 지배방정식인 Richards식을 사용하였다. 구성된 복합모형의 민감도 분석에 의하면 포화투수계수가 해빈내부의 지하수 흐름장에 가장 민감한 영향을 미치고 있음을 알 수 있었다. 또한 보다 많은 현지의 실측자료들이 수집 된다면 개발된 모형은 해빈내에 배수층 설치시 필요로 되는 제요소 해석에 효율적으로 이용될 수 있을 것이다

  • PDF

모형실험에 의한 토공구조물의 침투거동특성 (The Characteristics for Seepage Behaviour of Soil Structure by Modeling Tests)

  • 신방웅;강종범
    • 한국안전학회지
    • /
    • 제14권4호
    • /
    • pp.158-167
    • /
    • 1999
  • In parallel flow condition, to estimate the stability of the extended embankment constructed on a permeable foundation ground, a laboratory model test was performed due to extended materials and water level increasing velocity of a flood period. A laboratory model test was peformed for different permeability coefficients ($K_1=2.0{\times}10^{-5}cm/sec,\;K_2=1.5{\times}10^{-4}cm/sec,\;K_3=2.3{\times}10^{-3}cm/sec$) using seepage. The fluctuation of water level occurring to an extended embankment was analyzed by laboratory model tests as vary the increasing velocity of water level with 0.6cm/min, 1.2cm/min, 2.4cm/min respectively. In analysis results, the increase of water level into embankment occurs rapidly because seepage water moving along with a permeable soil flow into embankment. The larger the permeability coefficient of an extended part is the longer initial seepage distance, and the exit point of downstream slope is gradually increased and then shows unstable seepage behavior as occurring partial collapse. As the increasing velocity of water level increase, the initial seepage line is formed low, and the discharge increases. Therefore, the embankment extended by a lower permeable soil than existing embankment shows stable seepage behavior because an existing embankment plays a role as filter for an extended part.

  • PDF

준설토지반 가호안의 파이핑 안정성 평가를 위한 모형실험 (Model Tests of Piping Stability Estimation in dredging ground breakwater)

  • 김홍택;한연진;김종석;김태형
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.689-696
    • /
    • 2008
  • In this study, seepage characteristics of breakwater in dredging ground evaluated for the piping stability estimation by scale model tests. For this, to estimated the seepage characteristics through the model tests and numerical analyses, the engineering stability on piping of breakwater evaluated based on scale model tests and numerical analyses results.

  • PDF

방조제 바닥사석층의 규모가 제체 침투문제에 미치는 영향에 대한 모의 분석 (Simulation of Effects of the Size of Embedded Rock Layer under Earth Fill on Seepage Problems of Sea-dike)

  • 이행우;장병욱;송창섭;원정윤
    • 한국농공학회논문집
    • /
    • 제48권1호
    • /
    • pp.81-88
    • /
    • 2006
  • Numerical analyses were carried out for studying on seepage problems due to seawater intrusion through the embedded rock layers of the sea-dike. A seepage analysis model, SAMTLE was developed fur two-layer embankment system. The analyses by SAMTLE showed that the size of embedded rock layer had a significant effect on the seepage problems of sea-dike. If the embedded rock layer is longer and thicker, the seepage problems become more serious to water head, seepage rate and safety factor of piping in embankment. On the other hand, if the width of embedded rock layer is equivalent to the sea-dike's bottom width, the water head becomes lower and seepage rate and safety factor of piping are dramatically increasing. This makes another seepage problems such that the fresh water becomes saltier and higher seepage rates result in internal erosion of sea-dike.