• Title/Summary/Keyword: analysis of results

Search Result 139,128, Processing Time 0.111 seconds

Accuracy Improvement of Analysis Results Obtained from Numerical Analysis Model of Continuously Reinforced Concrete Pavement (연속철근 콘크리트 포장 수치해석 모델의 해석결과 정확도 개선 방법)

  • Cho, Young Kyo;Seok, Jong Hwan;Choi, Lyn;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.73-83
    • /
    • 2016
  • PURPOSES : The purpose of this study is to develop a method for improving the accuracy of analysis results obtained from a two-dimensional (2-D) numerical analysis model of continuously reinforced concrete pavement (CRCP). METHODS : The analysis results from the 2-D numerical model of CRCP are compared with those from more rigorous three-dimensional (3-D) models of CRCP, and the relationships between the results are recognized. In addition, the numerical analysis results are compared with the results obtained from field experiments. By performing these comparisons, the calibration factors used for the 2-D CRCP model are determined. RESULTS : The results from the comparisons between 2-D and 3-D CRCP analyses show that with the 2-D CRCP model, concrete stresses can be overestimated significantly, and crack widths can either be underestimated or overestimated by a slight margin depending on the assumption of plane stress or plane strain. The behaviors of crack width in field measurements are comparable to those obtained from the numerical model of CRCP. CONCLUSIONS : The accuracy of analysis results from the 2-D CRCP model can be improved significantly by applying calibration factors obtained from comparisons with 3-D analyses and field experiments.

Verification of Stress Analysis on the Bracket of Bus Bear Chassis

  • Kim, Gyu Sung
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.266-272
    • /
    • 2022
  • Structural stress analysis is performed to confirm the safety of the structures before the construction, and stress analysis is performed to evaluate the safety of various components before the ship or vehicle corresponding to the moving structure is manufactured. In this case, the stress analysis work is performed using the stress analysis software of each company. The results of the stress analysis based on the boundary conditions of the applied loads are analyzed to evaluate the safety of the structure, but the results are difficult to verify because most of the stress analysis software possessed by each company is one. In this paper, we were performed the stress analysis of the bracket applied to the bare chassis of the 30-passenger bus under development is performed by HYPERMESH. In order to verify this, the stress analysis is performed using ANSA/META under the same boundary condition. The stress analysis results of ANSA/META and HYPERMESH showed that they had the same stress distribution and the maximum stress occurred at the same location. Taken together, the results of stress analysis using HYPERMESH were reliable.

Round robin analysis to investigate sensitivity of analysis results to finite element elastic-plastic analysis variables for nuclear safety class 1 components under severe seismic load

  • Kim, Jun-Young;Lee, Jong Min;Park, Jun Geun;Kim, Jong-Sung;Cho, Min Ki;Ahn, Sang Won;Koo, Gyeong-Hoi;Lee, Bong Hee;Huh, Nam-Su;Kim, Yun-Jae;Kim, Jong-In;Nam, Il-Kwun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.343-356
    • /
    • 2022
  • As a part of round robin analysis to develop a finite element elastic-plastic seismic analysis procedure for nuclear safety class 1 components, a series of parametric analyses was carried out on the simulated pressurizer surge line system model to investigate sensitivity of the analysis results to finite element analysis variables. The analysis on the surge line system model considered dynamic effect due to the seismic load corresponding to PGA 0.6 g and elastic-plastic material behavior based on the Chaboche combined hardening model. From the parametric analysis results, it was found that strains such as accumulated equivalent plastic strain and equivalent plastic strain are more sensitive to the analysis variables than von Mises effect stress. The parametric analysis results also identified that finite element density and ovalization option in the elbow elements have more significant effect on the analysis results than the other variables.

A Study on the Intellectual Structure Analysis by Keyword Type Based on Profiling: Focusing on Overseas Open Access Field (프로파일링에 기초한 키워드 유형별 지적구조 분석에 관한 연구 - 국외 오픈액세스 분야를 중심으로 -)

  • Kim, Pan Jun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.4
    • /
    • pp.115-140
    • /
    • 2021
  • This study divided the keyword sets searched from LISTA database focusing on the overseas open access fields into two types (controlled keywords and uncontrolled keywords), and examined the results of performing an intellectual structure analysis based on profiling for the each keyword type. In addition, these results were compared with those of an intellectual structural analysis based on co-word analysis. Through this, I tried to investigate whether similar results were derived from profiling, another method of intellectual structure analysis, and to examine the differences between co-word analysis and profiling results. As a result, there was a similar difference to the co-word analysis in the results of intellectual structure analysis based on profiling for each of the two keyword types. Also, there were also noticeable differences between the results of intellectual structural analysis based on profiling and co-word analysis. Therefore, intellectual structure analysis using keywords should consider the characteristics of each keyword type according to the research purpose, and better results can be expected to be used based on profiling than co-word analysis to more clearly understand research trends in a specific field.

Efficient seismic analysis of multi-story buildings

  • Lee, Dong Guen;Kim, Hee Cheul
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.497-511
    • /
    • 1996
  • The equivalent static force procedure and the response spectrum analysis method are widely used for seismic analyses of multi-story buildings. The equivalent static force procedure is one of the most simple but less accurate method in predicting possible seismic response of a structure. The response spectrum analysis method provides more accurate results while it takes much longer computational time. In the response spectrum method, dynamic response of a multi-story building is obtained by combining modal responses through a proper procedure such as SRSS or CQC method. Since all of the analysis results are expressed in absolute values, structural engineers have difficulties to combine them with the results obtained from the static analysis. Design automation is interrupted at this stage because of the difficulty in the decision of the most critical design load. Pseudo-dynamic analysis method proposed in this study provides more accurate seismic analysis results than those of the equivalent static force procedure since the dynamic characteristics of a structure is considered. And the proposed method has an advantage in combination of the analysis results due to gravity loads and seismic loads since the direction of the forces can be considered.

A Study on Theoretical Analysis for Reinforced Concrete Transfer Girder of Hybrid Structures (복합구조의 철근콘크리트 전이보에 대한 이론적 해석 연구)

  • 권기혁;이춘호;김민수;이한선;고동우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.623-628
    • /
    • 2000
  • In this paper, the behavior for transfer girder of the upper-wall and lower-frame structures was studied by the nonlinear finite element analysis. It was analyzed and compared with the experimental results. Analysis results showed that failure modes were progressed by a initial diagonal crack in the shear span between the edges of the load and intermediate support plate. The nonlinear finite element analysis could predict deformation, principal stress, ultimate load and concrete crack. Also analysis results showed good agreement the test results.

  • PDF

Comparison of authorized feed analysis laboratories in Korea: looking at feed chemical analysis

  • Jeon, Seoyoung;Lee, Jun-Sung;Park, Seong-Min;Ki, Kwang-Seok;Seo, Seongwon
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.1
    • /
    • pp.86-94
    • /
    • 2017
  • In Korea, chemical analysis of animal feed is done through authorized feed analysis laboratories (AFALs). Analysis results among the AFALs need to be similar or within acceptable variations; however, there is no experimental evidence of their comparability. We aimed to determine the level of variation of feed chemical analysis results from different AFALs. For this, we requested analysis of four kinds of feed (corn, soybean meal, corn gluten feed, and ryegrass) to eight AFALs and the Cumberland Valley Analytical Services (CVAS) which is an internationally well-recognized feed analysis laboratory. The AFALs spent more time on analysis than did CVAS. Fiber analysis results varied significantly among laboratories. However, moisture, CP, and ash content values showed almost no variation. At least one AFAL obtained results with significant differences from CVAS for all tested values. These differences can be explained by the followings: 1) the standard methods for feed analysis (SMFA) established for AFALs are not detailed enough to control the analytical variations among different laboratories and 2) guidelines are insufficient for the quality control of analysis results in Korea. Failure to accurately identify the nutritional components of the feed could mean failure to provide adequate nutrients to the animals. Therefore, efforts to reduce the differences among AFALs, such as revising SMFA and publishing guidelines on quality control of feed analysis results, are important.

Comparison of monotonic and cyclic pushover analyses for the near-collapse point on a mid-rise reinforced concrete framed building

  • GUNES, Necmettin
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.189-196
    • /
    • 2020
  • The near-collapse performance limit is defined as the deformation at the 20% drop of maximum base shear in the decreasing region of the pushover curve for ductile framed buildings. Although monotonic pushover analysis is preferred due to the simple application procedure, this analysis gives rise to overestimated results by neglecting the cumulative damage effects. In the present study, the acceptabilities of monotonic and cyclic pushover analysis results for the near-collapse performance limit state are determined by comparing with Incremental Dynamic Analysis (IDA) results for a 5-story Reinforced Concrete framed building. IDA is performed to obtain the collapse point, and the near-collapse drift ratios for monotonic and cyclic pushover analysis methods are obtained separately. These two alternative drift ratios are compared with the collapse drift ratio. The correlations of the maximum tensile and compression strain at the base columns and beam plastic rotations with interstory drift ratios are acquired using the nonlinear time history analysis results by the simple linear regression analyses. It is seen that these parameters are highly correlated with the interstory drift ratios, and the results reveal that the near-collapse point acquired by monotonic pushover analysis causes unacceptably high tensile and compression strains at the base columns, as well as large plastic rotations at the beams. However, it is shown that the results of cyclic pushover analysis are acceptable for the near-collapse performance limit state.

Characteristic Analysis of Spiral-Grooved Pump Seal (나선 홈 펌프 시일의 특성 해석)

  • Ha, Tae-Woong;Lee, An-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.799-804
    • /
    • 2002
  • In this paper the leakage prediction and rotordynamic analysis of an annular seal with a smooth rotor and spiral-grooved stator are performed. For developing a theoretical model, the three-control-volume analysis of the circumferentially-grooved seal is expanded by considering pressure reduction due to the pumping effect of spiral groove and pressure flow through the spiral groove. Results by the present analysis are compared with available experimental data. For leakage the analysis results generally show a reasonable agreement to the experimental results. For rotordynamic coefficients the analysis results show the same trend as the experimental results for rotor speed with spiral angles, but their magnitudes show somewhat large deviations.

  • PDF

An Analysis of Results of the Creative Attitude Scale in Mathematics (수학에서 창의적 태도의 측정 결과 분석)

  • Kim Boo-Yoon;Lee Ji-Sung
    • The Mathematical Education
    • /
    • v.45 no.2 s.113
    • /
    • pp.155-163
    • /
    • 2006
  • In this paper, we focus on the analysis of the results of CAS-K (Creative Attitude Scale-Korea) including 33 items of 7 factors. Using the analysis gives us the information about students' creative attitude for each factor. We introduce three methods of the analysis about the results of CAS-K; total scores analysis, mean value of each factor analysis, and CAS-K map analysis. We develop the CAS-K map based on the mean value of each factor and three categories of factors. These categories are divergent attitude (fluency, appropriateness), problem solving attitude (positiveness, independency, concentration), and convergent attitude (convergency, accuracy). This analysis of the results of CAS-K can be a source of creative attitude to foster mathematical creativity.

  • PDF