• 제목/요약/키워드: analysis of ginsenoside

검색결과 301건 처리시간 0.025초

Korean Red Ginseng attenuates ethanol-induced steatosis and oxidative stress via AMPK/Sirt1 activation

  • Han, Jae Yun;Lee, Sangkyu;Yang, Ji Hye;Kim, Sunju;Sim, Juhee;Kim, Mi Gwang;Jeong, Tae Cheon;Ku, Sae Kwang;Cho, Il Je;Ki, Sung Hwan
    • Journal of Ginseng Research
    • /
    • 제39권2호
    • /
    • pp.105-115
    • /
    • 2015
  • Background: Alcoholic steatosis is the earliest and most common liver disease, and may precede the onset of more severe forms of liver injury. Methods: The effect of Korean Red Ginseng extract (RGE) was tested in two murine models of ethanol (EtOH)-feeding and EtOH-treated hepatocytes. Results: Blood biochemistry analysis demonstrated that RGE treatment improved liver function. Histopathology and measurement of hepatic triglyceride content verified the ability of RGE to inhibit fat accumulation. Consistent with this, RGE administration downregulated hepatic lipogenic gene induction and restored hepatic lipolytic gene repression by EtOH. The role of oxidative stress in the pathogenesis of alcoholic liver diseases is well established. Treatment with RGE attenuated EtOH-induced cytochrome P450 2E1, 4-hydroxynonenal, and nitrotyrosine levels. Alcohol consumption also decreased phosphorylation of adenosine monophosphate-activated protein kinase, which was restored by RGE. Moreover, RGE markedly inhibited fat accumulation in EtOH-treated hepatocytes, which correlated with a decrease in sterol regulatory element-binding protein-1 and a commensurate increase in sirtuin 1 and peroxisome proliferator-activated receptor-a expression. Interestingly, the ginsenosides Rb2 and Rd, but not Rb1, significantly inhibited fat accumulation in hepatocytes. Conclusion: These results demonstrate that RGE and its ginsenoside components inhibit alcoholic steatosis and liver injury by adenosine monophosphate-activated protein kinase/sirtuin 1 activation both in vivo and in vitro, suggesting that RGE may have a potential to treat alcoholic liver disease.

Effects of fermented black ginseng on wound healing mediated by angiogenesis through the mitogen-activated protein kinase pathway in human umbilical vein endothelial cells

  • Park, Jun Yeon;Lee, Dong-Soo;Kim, Chang-Eop;Shin, Myoung-Sook;Seo, Chang-Seob;Shin, Hyeun-Kyoo;Hwang, Gwi Seo;An, Jun Min;Kim, Su-Nam;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • 제42권4호
    • /
    • pp.524-531
    • /
    • 2018
  • Background: Fermented black ginseng (FBG) is produced through several cycles of steam treatment of raw ginseng, at which point its color turns black. During this process, the original ginsenoside components of raw ginseng (e.g., Re, Rg1, Rb1, Rc, and Rb2) are altered, and less-polar ginsenosides are generated (e.g., Rg3, Rg5, Rk1, and Rh4). The aim of this study was to determine the effect of FBG on wound healing. Methods: The effects of FBG on tube formation and on scratch wound healing were measured using human umbilical vein endothelial cells (HUVECs) and HaCaT cells, respectively. Protein phosphorylation of mitogen-activated protein kinase was evaluated via Western blotting. Finally, the wound-healing effects of FBG were assessed using an experimental cutaneous wounds model in mice. Results and Conclusion: The results showed that FBG enhanced the tube formation in HUVECs and migration in HaCaT cells. Western blot analysis revealed that FBG stimulated the phosphorylation of p38 and extracellular signal-regulated kinase in HaCaT cells. Moreover, mice treated with $25{\mu}g/mL$ of FBG exhibited faster wound closure than the control mice did in the experimental cutaneous wounds model in mice.

Sun Ginseng Protects Endothelial Progenitor Cells From Senescence Associated Apoptosis

  • Im, Woo-Seok;Chung, Jin-Young;Bhan, Jae-Jun;Lim, Ji-Yeon;Lee, Soon-Tae;Chu, Kon;Kim, Man-Ho
    • Journal of Ginseng Research
    • /
    • 제36권1호
    • /
    • pp.78-85
    • /
    • 2012
  • Endothelial progenitor cells (EPC) are a population of cells that circulate in the blood stream. They play a role in angiogenesis and, therefore, can be prognostic markers of vascular repair. Ginsenoside $Rg_3$ prevents endothelial cell apoptosis through the inhibition of the mitochondrial caspase pathway. It also affects estrogen activity, which reduces EPC senescence. Sun ginseng (SG), which is heat-processed ginseng, has a high content of ginsenosides. The purpose of this study was to investigate the protective effects of SG on senescence-associated apoptosis in EPCs. In order to isolate EPCs, mononuclear cells of human blood buffy coats were cultured and characterized by their uptake of acetylated low-density lipoprotein (acLDL) and their binding of Ulex europaeus agglutinin I (ulex-lectin). Flow cytometry with annexin-V staining was performed in order to assess early and late apoptosis. Senescence was determined by ${\beta}$-galactosidase (${\beta}$-gal) staining. Staining with 4'-6-Diamidino-2-phenylindole verified that most adherent cells (93${\pm}$2.7%) were acLDL-positive and ulex-lectin-positive. The percentage of ${\beta}$-gal-positive EPCs was decreased from 93.8${\pm}$2.0% to 62.5${\pm}$3.6% by SG treatment. A fluorescence-activated cell sorter (FACS) analysis showed that 4.9% of EPCs were late apoptotic in controls. Sun ginseng decreased the apoptotic cell population by 39% in the late stage of apoptosis from control baseline levels. In conclusion, these results show antisenescent and antiapoptotic effects of SG in human-derived EPCs, indicating that SG can enhance EPC-mediated repair mechanisms.

Compound K attenuates stromal cell-derived growth factor 1 (SDF-1)-induced migration of C6 glioma cells

  • Kim, Hyuck;Roh, Hyo Sun;Kim, Jai Eun;Park, Sun Dong;Park, Won Hwan;Moon, Jin-Young
    • Nutrition Research and Practice
    • /
    • 제10권3호
    • /
    • pp.259-264
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Stromal cell-derived growth factor 1 (SDF-1), also known as chemokine ligand 12, and chemokine receptor type 4 are involved in cancer cell migration. Compound K (CK), a metabolite of protopanaxadiol-type ginsenoside by gut microbiota, is reported to have therapeutic potential in cancer therapy. However, the inhibitory effect of CK on SDF-1 pathway-induced migration of glioma has not yet been established. MATERIALS/METHODS: Cytotoxicity of CK in C6 glioma cells was determined using an EZ-Cytox cell viability assay kit. Cell migration was tested using the wound healing and Boyden chamber assay. Phosphorylation levels of protein kinase C $(PKC){\alpha}$ and extracellular signal-regulated kinase (ERK) were measured by western blot assay, and matrix metallopeptidases (MMP) were measured by gelatin-zymography analysis. RESULTS: CK significantly reduced the phosphorylation of $PKC{\alpha}$ and ERK1/2, expression of MMP9 and MMP2, and inhibited the migration of C6 glioma cells under SDF-1-stimulated conditions. CONCLUSIONS: CK is a cell migration inhibitor that inhibits C6 glioma cell migration by regulating its downstream signaling molecules including $PKC{\alpha}$, ERK1/2, and MMPs.

A comparative study on chemical composition of total saponins extracted from fermented and white ginseng under the effect of macrophage phagocytotic function

  • Xiao, Dan;Xiu, Yang;Yue, Hao;Sun, Xiuli;Zhao, Huanxi;Liu, Shuying
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.379-385
    • /
    • 2017
  • In this study, white ginseng was used as the raw material, which was fermented with Paecilomyces hepiali through solid culture medium, to produce ginsenosides with modified chemical composition. The characteristic chemical markers of the products thus produced were investigated using rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC-QTOF-MS). Chemical profiling data were obtained, which were then subjected to multivariate statistical analysis for the systematic comparison of active ingredients in white ginseng and fermented ginseng to understand the beneficial properties of ginsenoside metabolites. In addition, the effects of these components on biological activity were investigated to understand the improvements in the phagocytic function of macrophages in zebrafish. According to the established RRLC-QTOF-MS chemical profiling, the contents in ginsenosides of high molecular weight, especially malonylated protopanaxadiol ginsenosides, were slightly reduced due to the fermentation, which were hydrolyzed into rare and minor ginsenosides. Moreover, the facilitation of macrophage phagocytic function in zebrafish following treatment with different ginseng extracts confirmed that the fermented ginseng is superior to white ginseng. Our results prove that there is a profound change in chemical constituents of ginsenosides during the fermentation process, which has a significant effect on the biological activity of these compounds.

Re-evaluation of physicochemical and NMR data of triol ginsenosides Re, Rf, Rg2, and 20-gluco-Rf from Panax ginseng roots

  • Cho, Jin-Gyeong;In, Seo-Ji;Jung, Ye-Jin;Cha, Byeong-Ju;Lee, Dae-Young;Kim, Yong-Bum;Yeom, Myeonghun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • 제38권2호
    • /
    • pp.116-122
    • /
    • 2014
  • Ginseng roots were extracted with aqueous methanol, and extracts were suspended in water and extracted successively with ethyl acetate and n-butanol. Column chromatography using the n-butanol fraction yielded four purified triol ginseng saponins: the ginsenosides Re, Rf, Rg2, and 20-gluco-Rf. The physicochemical, spectroscopic, and chromatographic characteristics of the ginsenosides were measured and compared with reports from the literature. For spectroscopic analysis, two-dimensional nuclear magnetic resonance (NMR) methods such as $^1H$-$^1H$ correlation spectroscopy, nuclear Overhauser effect spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond connectivity were employed to identify exact peak assignments. Some peak assignments for previously published $^1H$-and $^{13}C$-NMR spectra were found to be inaccurate. This study reports the complete NMR assignment of 20-gluco-Rf for the first time.

Overexpression of ginseng UGT72AL1 causes organ fusion in the axillary leaf branch of Arabidopsis

  • Nguyen, Ngoc Quy;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.419-427
    • /
    • 2017
  • Background: Glycosylation of natural compounds increases the diversity of secondary metabolites. Glycosylation steps are implicated not only in plant growth and development, but also in plant defense responses. Although the activities of uridine-dependent glycosyltransferases (UGTs) have long been recognized, and genes encoding them in several higher plants have been identified, the specific functions of UGTs in planta remain largely unknown. Methods: Spatial and temporal patterns of gene expression were analyzed by quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) and GUS histochemical assay. In planta transformation in heterologous Arabidopsis was generated by floral dipping using Agrobacterium tumefaciens (C58C1). Protein localization was analyzed by confocal microscopy via fluorescent protein tagging. Results: PgUGT72AL1 was highly expressed in the rhizome, upper root, and youngest leaf compared with the other organs. GUS staining of the promoter: GUS fusion revealed high expression in different organs, including axillary leaf branch. Overexpression of PgUGT72AL1 resulted in a fused organ in the axillary leaf branch. Conclusion: PgUGT72AL1, which is phylogenetically close to PgUGT71A27, is involved in the production of ginsenoside compound K. Considering that compound K is not reported in raw ginseng material, further characterization of this gene may shed light on the biological function of ginsenosides in ginseng plant growth and development. The organ fusion phenotype could be caused by the defective growth of cells in the boundary region, commonly regulated by phytohormones such as auxins or brassinosteroids, and requires further analysis.

김치에서 분리한 진세노사이드 전환 능력이 있는 Lactobacillus koreensis 26-25의 유전체 서열 분석 (Complete genome sequence of Lactobacillus koreensis 26-25, a ginsenoside converting bacterium, isolated from Korean kimchi)

  • 김주현;류청매;스리니바산 사티야라지;김명겸;김상용;위지향;임완택
    • 미생물학회지
    • /
    • 제54권4호
    • /
    • pp.477-479
    • /
    • 2018
  • 김치로부터 분리한 Lactobacillus koreensis 26-25 균주의 유전체서열을 분석하였다. 균주 26-25의 유전체는 G + C 비율이 49.23%이며, 2,720개의 유전자와 2,556개의 단백질 코딩 유전자, 85개의 위유전자 그리고 78개의 RNA 유전자를 포함한 단일 원형 염색체로 구성되었으면 그 크기는 3,006,812 bp였다. 균주 26-25는 인삼사포닌의 당 분해에 관여하는 여러 타입의 글라이코시다제 유전자를 가지고 있었다. 이러한 지놈 분석은 주요 진세노사이드가 우수한 약리학적 활성의 미량 진세노사이드로 전환하는데 관여하는 유전자 특징을 이해하는데 큰 기여가 되었다.

Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species

  • Wooram Choi;Jeong Hun Cho;Sang Hee Park;Dong Seon Kim;Hwa Pyoung Lee;Donghyun Kim;Hyun Soo Kim;Ji Hye Kim;Jae Youl Cho
    • Journal of Ginseng Research
    • /
    • 제48권2호
    • /
    • pp.211-219
    • /
    • 2024
  • Background: Recently, plant-derived exosome-like nanoparticles (PDENs) have been isolated, and active research was focusing on understanding their properties and functions. In this study, the characteristics and molecular properties of ginseng root-derived exosome-like nanoparticles (GrDENs) were examined in terms of skin protection. Methods: HPLC-MS protocols were used to analyze the ginsenoside contents in GrDENs. To investigate the beneficial effect of GrDENs on skin, HaCaT cells were pre-treated with GrDENs (0-2 × 109 particles/mL), and followed by UVB irradiation or H2O2 exposure. In addition, the antioxidant activity of GrDENs was measured using a fluorescence microscope or flow cytometry. Finally, molecular mechanisms were examined with immunoblotting analysis. Results: GrDENs contained detectable levels of ginsenosides (Re, Rg1, Rb1, Rf, Rg2 (S), Gyp17, Rd, C-Mc1, C-O, and F2). In UVB-irradiated HaCaT cells, GrDENs protected cells from death and reduced ROS production. GrDENs downregulated the mRNA expression of proapoptotic genes, including BAX, caspase-1, -3, -6, -7, and -8 and the ratio of cleaved caspase-8, -9, and -3 in a dose-dependent manner. In addition, GrDENs reduced the mRNA levels of aging-related genes (MMP2 and 3), proinflammatory genes (COX-2 and IL-6), and cellular senescence biomarker p21, possibly by suppressing activator protein-1 signaling. Conclusions: This study demonstrates the protective effects of GrDENs against skin damage caused by UV and oxidative stress, providing new insights into beneficial uses of ginseng. In particular, our results suggest GrDENs as a potential active ingredient in cosmeceuticals to promote skin health.

HPLC를 이용한 이중탕 중 3종 활성성분의 동시분석법 확립 (Simultaneous Determination of Three Compounds in Ejung Tang by HPLC-DAD and LC-ESI-MS)

  • 이보형;마진열;원진배;양혜진;윤보라;마충제
    • 생약학회지
    • /
    • 제43권1호
    • /
    • pp.10-15
    • /
    • 2012
  • An accurate and sensitive analysis method was established for simultaneous determination of three bioactive compounds (glycyrrhizin, 6-gingerol and ginsenoside Rg3) in the Ejung Tang with high-performance liquid chromatography (HPLC)-photodiode array detection (DAD)-electrospray ionization (ESI)-Mass spectrometry (MS). The optimizing chromatographic separations a were acquired by an $C_{18}$ column ($5{\mu}m$, $4.6I.D{\times}250mm$, SHISHEDO) using gradient elution with water comprising 0.1% TFA(trifluoroacetic acid) and acetonitrile at a performing temperature of $35^{\circ}C$. Flow rate was 1.0 ml/min. A detection UV wavelength set at 205 nm and 250 nm. The three compounds were identified by electrospray ionization mass spectrometry. All calibration curves indicated great linear regression within test ranges ($R^2>0.9997$). The established method provided acceptable precision and accuracy. The relative standard deviations (RSDs) of intra-day and inter-day were less than 2.00% and 3.00%, respectively. The recoveries were found to range from 94.49 to 101.10% for the three compounds analyzed. These results showed that this method was effective and reliable for quality control of Eiung-Tang.