• Title/Summary/Keyword: analysis data

Search Result 85,083, Processing Time 0.084 seconds

Structural health monitoring data reconstruction of a concrete cable-stayed bridge based on wavelet multi-resolution analysis and support vector machine

  • Ye, X.W.;Su, Y.H.;Xi, P.S.;Liu, H.
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.555-562
    • /
    • 2017
  • The accuracy and integrity of stress data acquired by bridge heath monitoring system is of significant importance for bridge safety assessment. However, the missing and abnormal data are inevitably existed in a realistic monitoring system. This paper presents a data reconstruction approach for bridge heath monitoring based on the wavelet multi-resolution analysis and support vector machine (SVM). The proposed method has been applied for data imputation based on the recorded data by the structural health monitoring (SHM) system instrumented on a prestressed concrete cable-stayed bridge. The effectiveness and accuracy of the proposed wavelet-based SVM prediction method is examined by comparing with the traditional autoregression moving average (ARMA) method and SVM prediction method without wavelet multi-resolution analysis in accordance with the prediction errors. The data reconstruction analysis based on 5-day and 1-day continuous stress history data with obvious preternatural signals is performed to examine the effect of sample size on the accuracy of data reconstruction. The results indicate that the proposed data reconstruction approach based on wavelet multi-resolution analysis and SVM is an effective tool for missing data imputation or preternatural signal replacement, which can serve as a solid foundation for the purpose of accurately evaluating the safety of bridge structures.

Evaluation for usefulness of Chukwookee Data in Rainfall Frequency Analysis (강우빈도해석에서의 측우기자료의 유용성 평가)

  • Kim, Kee-Wook;Yoo, Chul-Sang;Park, Min-Kyu;Kim, Dae-Ha;Park, Sangh-Young;Kim, Hyeon-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1526-1530
    • /
    • 2007
  • In this study, the chukwookee data were evaluated by applying that for the historical rainfall frequency analysis. To derive a two parameter log-normal distribution by using historical data and modern data, censored data MLE and binomial censored data MLE were applied. As a result, we found that both average and standard deviation were all estimated smaller with chukwookee data then those with only modern data. This indicates that rather big events rarely happens during the period of chukwookee data then during the modern period. The frequency analysis results using the parameters estimated were also similar to those expected. The point to be noticed is that the rainfall quantiles estimated by both methods were similar, especially for the 99% threshold. This result indicates that the historical document records like the annals of Chosun dynasty could be valuable and effective for the frequency analysis. This also means the extension of data available for frequency analysis.

  • PDF

Program Development of Integrated Expression Profile Analysis System for DNA Chip Data Analysis (DNA칩 데이터 분석을 위한 유전자발연 통합분석 프로그램의 개발)

  • 양영렬;허철구
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.381-388
    • /
    • 2001
  • A program for integrated gene expression profile analysis such as hierarchical clustering, K-means, fuzzy c-means, self-organizing map(SOM), principal component analysis(PCA), and singular value decomposition(SVD) was made for DNA chip data anlysis by using Matlab. It also contained the normalization method of gene expression input data. The integrated data anlysis program could be effectively used in DNA chip data analysis and help researchers to get more comprehensive analysis view on gene expression data of their own.

  • PDF

Exploratory Data Analysis for microarray experiments with replicates

  • Lee, Eun-Kyung;Yi, Sung-Gon;Park, Tae-Sung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.37-41
    • /
    • 2005
  • Exploratory data analysis(EDA) is the initial stage of data analysis and provides a useful overview about the whole microarray experiment. If the experiments are replicated, the analyst should check the quality and reliability of microarray data within same experimental condition before the deeper statistical analysis. We shows EDA method focusing on the quality and reproducibility for replicates.

  • PDF

Evaluation of Water Quality Using Multivariate Statistic Analysis with Optimal Scaling

  • Kim, Sang-Soo;Jin, Hyun-Guk;Park, Jong-Soo;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.349-357
    • /
    • 2005
  • Principal component analysis(PCA) was carried out to evaluate the water quality with the monitering data collected from 1997 to 2003 along the coastal area of Ulsan, Korea. To enhance evaluation and to complement descriptive power of traditional PCA, optimal scaling was applied to transform the original data into optimally scaled data. Cluster analysis was also applied to classify the monitering stations according to their characteristics of water quality.

  • PDF

Categorical Data Analysis by Means of Echelon Analysis with Spatial Scan Statistics

  • Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.83-94
    • /
    • 2004
  • In this study we analyze categorical data by means of spatial statistics and echelon analysis. To do this, we first determine the hierarchical structure of a given contingency table by using echelon dendrogram then, we detect candidates of hotspots given as the top echelon in the dendrogram. Next, we evaluate spatial scan statistics for the zones of significantly high or low rates based on the likelihood ratio. Finally, we detect hotspots of any size and shape based on spatial scan statistics.

  • PDF

Analysis of massive data in astronomy (천문학에서의 대용량 자료 분석)

  • Shin, Min-Su
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1107-1116
    • /
    • 2016
  • Recent astronomical survey observations have produced substantial amounts of data as well as completely changed conventional methods of analyzing astronomical data. Both classical statistical inference and modern machine learning methods have been used in every step of data analysis that range from data calibration to inferences of physical models. We are seeing the growing popularity of using machine learning methods in classical problems of astronomical data analysis due to low-cost data acquisition using cheap large-scale detectors and fast computer networks that enable us to share large volumes of data. It is common to consider the effects of inhomogeneous spatial and temporal coverage in the analysis of big astronomical data. The growing size of the data requires us to use parallel distributed computing environments as well as machine learning algorithms. Distributed data analysis systems have not been adopted widely for the general analysis of massive astronomical data. Gathering adequate training data is expensive in observation and learning data are generally collected from multiple data sources in astronomy; therefore, semi-supervised and ensemble machine learning methods will become important for the analysis of big astronomical data.

A Big Data Preprocessing using Statistical Text Mining (통계적 텍스트 마이닝을 이용한 빅 데이터 전처리)

  • Jun, Sunghae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.470-476
    • /
    • 2015
  • Big data has been used in diverse areas. For example, in computer science and sociology, there is a difference in their issues to approach big data, but they have same usage to analyze big data and imply the analysis result. So the meaningful analysis and implication of big data are needed in most areas. Statistics and machine learning provide various methods for big data analysis. In this paper, we study a process for big data analysis, and propose an efficient methodology of entire process from collecting big data to implying the result of big data analysis. In addition, patent documents have the characteristics of big data, we propose an approach to apply big data analysis to patent data, and imply the result of patent big data to build R&D strategy. To illustrate how to use our proposed methodology for real problem, we perform a case study using applied and registered patent documents retrieved from the patent databases in the world.

Saliency Score-Based Visualization for Data Quality Evaluation

  • Kim, Yong Ki;Lee, Keon Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.289-294
    • /
    • 2015
  • Data analysts explore collections of data to search for valuable information using various techniques and tricks. Garbage in, garbage out is a well-recognized idiom that emphasizes the importance of the quality of data in data analysis. It is therefore crucial to validate the data quality in the early stage of data analysis, and an effective method of evaluating the quality of data is hence required. In this paper, a method to visually characterize the quality of data using the notion of a saliency score is introduced. The saliency score is a measure comprising five indexes that captures certain aspects of data quality. Some experiment results are presented to show the applicability of proposed method.

Web-based DNA Microarray Data Analysis Tool

  • Ryu, Ki-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1161-1167
    • /
    • 2006
  • Since microarray data structures are various and complicative, the data are generally stored in databases for approaching to and controlling the data effectively. But we have some difficulties to analyze and control the data when the data are stored in the several database management systems. The existing analysis tools for DNA microarray data have many difficult problems by complicated instructions, and dependency on data types and operating system, and high cost, etc. In this paper, we design and implement the web-based analysis tool for obtaining to useful information from DNA microarray data. When we use this tool, we can analyze effectively DNA microarray data without special knowledge and education for data types and analytical methods.

  • PDF