• Title/Summary/Keyword: anaerobic digestion process

Search Result 191, Processing Time 0.028 seconds

Generation of Hazardous Gas and Corrosion Originated from Anaerobic Digestion of Process Water in OCC Recycling Mill (골판지 재활용 공정수의 혐기성 분해에 따른 유해 기체의 생성과 부식)

  • Park, Dae-Sik;Ryu, Jeong-Yong;Song, Bong-Keun;Seo, Yung-Bum;Sung, Yong-Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.59-65
    • /
    • 2005
  • There are accumulations of remained chemical additives and contaminants in the process water of semi-closed linerboard mill. High temperature of the process water aggravates the anaerobic digestion of contaminated process water and causes the generation of hazardous gases, which are from the biological reaction of varied additives and contaminants. The hydrogen sulfide in the gases easily combine with moisture in the air, and become sulfuric acid, which causes corrosion of paper machinery. This hydrogen sulfide is from the reduction of sulfate ions in the process water, and the sulfate ions are mostly from the alum. We changed the alum to PAC (Poly Aluminum Chloride). The results were preventing generation of hydrogen sulfide, and equivalent sizing effect by the use of PAC.

Treatment of Seafood Wastewater using an Improved High-rate Anaerobic Reactor (개선된 고율혐기성 공정을 이용한 수산물 가공폐수처리)

  • Choi, Byeong-Yeong;Choi, Yong-Bum;Han, Dong-Jun;Kwon, Jae-Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7443-7450
    • /
    • 2014
  • To resolve shortcomings of high-rate anaerobic processes, such as high upward flow velocity, this study sought to improve the structure of the high-rate anaerobic reactor and evaluate its performance. The improved reactor was manufactured by adjusting the diameter and dividing the reactor into three parts. The evaluation of the structurally improved reactor revealed that the reactor could stabilize a single circuit, and prevent the accumulation of solid matter and leakage of microbes, thereby stabilize the microbes. In the process of anaerobic digestion, an increase in pH and alkalinity within the reactor was presumably attributed to bicarbonate created in the process of organic matter decomposition and due to the re-dissolution of some biogas. To maintain a high rate of organic matter removal, the reactor should be operated with more than 9 hrs of HRT and an organic matter load of under $10.kgTCODcr/m^3{\cdot}d$. The methane gas generated in the anaerobic digestion process showed a high content of 65~83 % at the organic matter load of over $7.7kgTCODcr/m^3{\cdot}d$. per removal of CODcr. The methane quantity was generated at $0.10{\sim}0.23m^3CH_4/kgCOD_{rem}$, showing that it was smaller than the theoretical methane generation amount (0.35) in the STP state. In the latter part of high-rate anaerobic process, an advanced treatment process was required to remove nitrogen.

Effects of Antimicrobials on Methane Production in an Anaerobic Digestion Process (혐기소화공정에서 항생항균물질이 메탄생성에 미치는 영향)

  • Oh, Seung-Yong;Park, Noh-Back;Park, Woo-Kyun;Chun, Man-Young;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.295-303
    • /
    • 2011
  • BACKGROUND: Anaerobic digestion process is recently adapted technology for treatment of organic waste such as animal manure because the energy embedded in the waste can be recovered from the waste while the organic waste were digested. Ever increased demand for consumption of meat resulted in the excessive use of antimicrobials to the livestocks for more food production. Most antimicrobials administered to animals are excreted through urine and feces, which might highly affect the biological treatment processes of the animal manure. The aim of this study was to investigate the effects of antimicrobials on the efficiency of anaerobic digestion process and to clarify the interactions between antimicrobials and anaerobes. METHODS AND RESULTS: The experiment was consisted of two parts 1) batch test to investigate the effects of individual antibiotic compounds on production of methane and VFAs(volatile fatty acids), and removal efficiency of organic matter, and 2) the continuous reactor test to elucidate the effects of mixed antimicrobials on the whole anaerobic digestion process. The batch test showed no inhibitions in the rate of methane and VFAs production, and the rate of organic removal were observed with treatment at 1~10 mg/L of antimicrobials while temporary inhibition was observed at 50 mg/L treatment. In contrast, treatment of 100 mg/L antimicrobials resulted in continuous decreased in the rate of methane production and organic removal efficiency. The continuous reactor test conduced to see the influence of the mixed antimicrobials showed only small declines in the methane production and organic matter removal when 1~10 mg/L of combined antimicrobials were applied but this was not significant. In contrast, with the treatment of 50 mg/L of combined antimicrobials, the rate of organic removal efficiency in effluent decreased by 2~15% and the rate of biogas production decreased by 30%. CONCLUSION(s): The antimicrobials remained in the animal manure might not be removed during the anaerobic digestion process and hence, is likely to be released to the natural ecosystem. Therefore, the efforts to decline the usage of antimicrobials for animal farming would be highly recommended.

Effect of Increasing Amounts of Ammonium Nitrogen Induced by Consecutive Mixture of Poultry Manure and Cattle Slurry on the Microbial Community during Thermophilic Anaerobic Digestion

  • Alsouleman, Khulud
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1993-2005
    • /
    • 2019
  • Thermophilic anaerobic digestion (TAD) is characterized by higher biogas production rates as a result of assumedly faster microbial metabolic conversion rates compared to mesophilic AD. It was hypothesized that the thermophilic microbiome with its lower diversity than the mesophilic one is more susceptible to disturbances introduced by alterations in the operating factors, as an example, the supply of nitrogen-rich feedstock such as poultry manure (PM). Laboratory scaled TAD experiments using cattle slurry and increasing amounts of PM were carried out to investigate the (in-) stability of the process performance caused by the accumulation of ammonium and ammonia with special emphasis on the microbial community structure and its dynamic variation. The results revealed that the moderate PM addition, i.e., 25% (vol/vol based on volatile substances) PM, resulted in a reorganization of the microbial community structure which was still working sufficiently. With 50% PM application, the microbial community was further stepwise re-organized and was able to compensate for the high cytotoxic ammonia contents only for a short time resulting in consequent process disturbance and final process failure. This study demonstrated the ability of the acclimated thermophilic microbial community to tolerate a certain amount of nitrogen-rich substrate.

Laboratory Investigation into Factors Affecting Performance of Anaerobic Contact Process for Pear Processing Wastewater

  • Hur Joon Moo;Son Bu Soon;Jang Bong Ki;Park Jong An;Lee Jong Whoa;Kim Joon Hyun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.2
    • /
    • pp.99-108
    • /
    • 1998
  • Results obtained from this research showed that the anaerobic contact process was applicable to pear waste with COD removal efficiencies of up to $95\%$ depending on conditions, provided ammonium and phosphate salts were added as well as other nutrients, present in the commercial fertilizer, Milorganite or in yeast extract. These latter materials were required in minimum concentrations of 5 and 1.5 g/L, respectively, in the feed independent of HRT and volatile solids loading rate, with part of the effect due to the mineral fraction. Digestion was satisfactory over the whole range of volatile solids loading rates and liquid retention time of 30 to 0.5 days tested, although treatment efficiency dropped off noticeably between 1 and 0.5 day liquid retention time because of poorer flocculation and separation of anaerobic bacteria. Settling of anaerobic bacteria including methane producing bacteria was related to settling of mixed liquor suspended solids only at 1 to 5 days liquid retention times, at other liquid retention times anaerobic microorganism settled markedly less efficiently than mixed liquor suspended solids. Further studies are being made to provide information of practical and basic interest. Data on the composition of the active fraction of yeast extract might solve many practical nutrient problems encountered with the anaerobic contact process and improve its economics. Further improvement in the flocculation and settling of anaerobic bacteria as well as other bacteria would improve overall performance and allow the use of shorter liquid retention times with dilute waste. Knowledge about the numbers of methane formers present would allow a degree of understanding and control of the process not presently attainable.

  • PDF

Characteristics of Substrate Degradation and Bacterial Population in the Membrane Separation Anaerobic Digestion Process (막분리혐기성소화공정에 있어서 기질분해와 세균군의 분포특성)

  • Cha, Gi-Cheol;Chung, Hyung-Keun;Kim, Dong-Jin;Kim, Young-Chur
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.541-554
    • /
    • 2000
  • Experimental study of anaerobic digestion process combined with and without the submerged separation membrane was investigated by using laboratory-scale reactor at the hydraulic retention time of 0.5 day and 1.0 day. The removal efficiencies of carbohydrate at the digester without and with membrane were 84.4 to 86.8 % and 99.6 to 99.7 %, respectively, and the methane gas recovery efficiencies were 0.4 to 1.2 % and 12.3 to 28.7 %. According to the measurement by the most probable numbers method. the numbers of various groups of bacteria in the digesters with membrane were enumerated in the following ranges ; acidogens : $1.7{\times}10^9$ to $5.0{\times}10^9MPN/m{\ell}$, homoacetogens : $5.0{\times}10^7$ to $2.4{\times}10^8MPN/m{\ell}$, $H_2$-utilizing methanogens : $1.3{\times}10^7$ to $9.2{\times}10^8MPN/m{\ell}$, and acetate-utilizing methanogens : $2.3{\times}10^6$ to $2.0{\times}10^8MPN/m{\ell}$. The number of methanogens at the digester with membrane increased by approximately $10^2$ to $10^4$ times in comparison with that of the digester without membrane.

  • PDF

Change of Heating Value of Cow Manure According to Pre-treatment (전처리 방법 적용에 의한 우분의 열량값 변화)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Lee, Dong-Jun;Lee, Dong-Hyun;Cho, Won-Mo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.63-73
    • /
    • 2015
  • This study was carried out to evaluate the change of heating value of cow manure by applying pre-treatment process. Three types of treatment precess; Composting, Dry anaerobic digestion and Physical compression were applied as a pre-treatment method. Composting and anaerobic digestion of cow manure were cause of caloric value reduction of the cow manure. The heating value of cured compost was 5% lower than that of initial composting material. The heating value of dry anaerobic digestion residue was 25.7% lower than that of fresh cow manure. By physical compression of cow manure, heating value and VS/TS ratio (Volatile solids/Total solids ratio) of compressed cow manure were higher than that of fresh cow manure. On the other hand, heating value and VS/TS ratio of leachate generated by compression process were lower than those of fresh cow manure.

Partial Nitrification of Wastewater with Strong N for Anaerobic Nitrogen Removal (혐기성 질소제거를 위한 고농도 질소폐수의 부분질산화)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.414-420
    • /
    • 2006
  • Effluent from an anaerobic digestion system with an elutriated phased treatment(ADEPT, Anaeorbic Digestion Elutriated Phase Treatment) for piggery waste treatment using anaerobic ammonium oxidation(ANAMMOX) process was used as a substrate of partial nitrification reactor. In mesophilic condition($35^{\circ}C$), controlling parameters of nitrite accumulation were HRT, pH, free ammonia(FA) and hydroxylamine rather than dissolved oxygen. Bicarbonate alkalinity consumption ratio including bicarbonate stripping and buffering was 8.78 g $Alk._{comsumed}/g\;NH_4-N_{converted}$. In steady state for 1 day of HRT and $2.7{\sim}4.4mg/L$ of DO, $NO_2-N/NH_4-N$ ratio of partial nitrification effluent was about $1{\sim}3$, which was applicable to ANAMMOX reactor influent for the combined partial nitrification-ANAMMOX process.

Effect of seeding ratio on acidogenic biokinetics in high ammonia concentration

  • Yang, Keun-Young;Shin, Seung-Gu;Hwang, Seok-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.65-66
    • /
    • 2005
  • Anaerobic digestion is one of the well-known methods for biological treatment handling of concentrated organic matter such as swine $wastewater.^{1)} The anaerobic digestion can reduce organic loading but also hydrolyze non-biodegradable organic $matter.^{2)}$ The feces from the scrapper-type barn are usually collected to make compost and the urine is discarded with swine-slurry wastewater by ocean-dumping or treated by biological methods. The lagoon, aerobic digestion, anaerobic digestion, SBR, $A^{2}/O$, and UCT have been applied for treating swine $wastewater.^{3)} In this study, as a result of the analysis of swine wastewater, the total and soluble chemical oxygen demand was 130g/L and 60g/L, respectively. And the volatile fatty acid as chemical oxygen demand equivalent was 45g/L, which was 75% of soluble chemical oxygen demand. Before everything else, ammonia nitrogen concentration was 6.5 g/L. From biochemical acidogenic potential test, it was concluded that the enhanced acidification process to manage swine waste should be operated in the ammonia nitrogen concentration of less than 1.2 g/L. In the result of seeding ratio experiments with artificial $wastewater^{4)}, the lag period of acidogens was taken the long time because of the inhibition by the $ammonia^{5)}$, however no difference of period by the seeding ratio was not shown. The Haldane-based biokinetics were also evaluated using a method of fourth order Runge-Kutta $approximation.^{6,7)}$ The nonlinear least squares (NLLS) method with a 95% confidence interval was also used. The ranges of maximum microbial growth rate, ${/mu_{max}}$, and half saturation coefficient, $K_{s}$, for acidogenesis of various seeding ratio with artificial wastewater were 6.1 ~ 12.6 $d^{-1}$ and 45,000 ~ 53,500 mg glucose/L, respectively. Also, the methanogenic microbial yield coefficient, Y, and microbial decay rate coefficient, $k_{d}$, and inhibition substrate concentration, $K_{si}$, for the reactors were determined to be 0.32 ~ 0.465 ${/mu}g$/mg glucose; 0.42 ~ 1.01 $d^{-1}$ and 51,500 ~ 55,600 mg glucose/L, respectively.

  • PDF

Effect of Methane Production from Pig Manure Slurry According to The Solids Concentration and The Crushing Solids of Pig Manure Slurry (돼지분뇨 슬러리중의 고형물 농도수준과 분쇄 처리가 메탄 생성에 미치는 효과)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Lee, Dong-Jun;Lee, Dong-Hyun;Cho, Won-Mo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.74-85
    • /
    • 2015
  • Recently, the number of anaerobic digestion facility for livestock manure is on the rise in Korea. All of the livestock manure anaerobic digestion facilities in operation use pig manure slurry as a substrate for anaerobic digestion. Generally, pig manure slurry is composed of 97% water and 3% solids. The particulate matter, such as corn in the form of particles that is undigested by pig is contained in the pig manure slurry. Particulate matter is a factor reducing the effectiveness of biogas production in the anaerobic digestion process. In this study, mechanical grinding treatment was applied to analyze the effect of methane production from pig manure slurry by reducing the particle size of the slurry. On the other hand, the effect of the solid concentration levels on methane production and methane content of the biogas was analyzed. The fine particle concentration in the pig manure slurry was increased by the mechanical grinding treatment. And methane production and methane content of the biogas were higher in grinded pig manure slurry than untreated raw slurry.