DOI QR코드

DOI QR Code

Effects of Antimicrobials on Methane Production in an Anaerobic Digestion Process

혐기소화공정에서 항생항균물질이 메탄생성에 미치는 영향

  • Oh, Seung-Yong (National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Noh-Back (National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Woo-Kyun (National Academy of Agricultural Science, Rural Development Administration) ;
  • Chun, Man-Young (Department of Environmental Engineering, Hankyong National University) ;
  • Kwon, Soon-Ik (National Academy of Agricultural Science, Rural Development Administration)
  • 오승용 (농촌진흥청 국립농업과학원) ;
  • 박노백 (농촌진흥청 국립농업과학원) ;
  • 박우균 (농촌진흥청 국립농업과학원) ;
  • 천만영 (한경대학교 환경공학과) ;
  • 권순익 (농촌진흥청 국립농업과학원)
  • Received : 2011.08.09
  • Accepted : 2011.09.23
  • Published : 2011.09.30

Abstract

BACKGROUND: Anaerobic digestion process is recently adapted technology for treatment of organic waste such as animal manure because the energy embedded in the waste can be recovered from the waste while the organic waste were digested. Ever increased demand for consumption of meat resulted in the excessive use of antimicrobials to the livestocks for more food production. Most antimicrobials administered to animals are excreted through urine and feces, which might highly affect the biological treatment processes of the animal manure. The aim of this study was to investigate the effects of antimicrobials on the efficiency of anaerobic digestion process and to clarify the interactions between antimicrobials and anaerobes. METHODS AND RESULTS: The experiment was consisted of two parts 1) batch test to investigate the effects of individual antibiotic compounds on production of methane and VFAs(volatile fatty acids), and removal efficiency of organic matter, and 2) the continuous reactor test to elucidate the effects of mixed antimicrobials on the whole anaerobic digestion process. The batch test showed no inhibitions in the rate of methane and VFAs production, and the rate of organic removal were observed with treatment at 1~10 mg/L of antimicrobials while temporary inhibition was observed at 50 mg/L treatment. In contrast, treatment of 100 mg/L antimicrobials resulted in continuous decreased in the rate of methane production and organic removal efficiency. The continuous reactor test conduced to see the influence of the mixed antimicrobials showed only small declines in the methane production and organic matter removal when 1~10 mg/L of combined antimicrobials were applied but this was not significant. In contrast, with the treatment of 50 mg/L of combined antimicrobials, the rate of organic removal efficiency in effluent decreased by 2~15% and the rate of biogas production decreased by 30%. CONCLUSION(s): The antimicrobials remained in the animal manure might not be removed during the anaerobic digestion process and hence, is likely to be released to the natural ecosystem. Therefore, the efforts to decline the usage of antimicrobials for animal farming would be highly recommended.

혐기성 소화 반응조에서 항생항균물질의 영향을 평가하기 위해서 회분식 및 연속식 실험을 통하여 biogas 발생량, 유기산 생성, 유기물 제거 거동 등을 관찰하였다. 회분식 조건에서 단일항생항균물질 1~10 mg/L에서는 저해 영향이 관찰되지 않았으며, 50 mg/L에서 일부 VFAs가 축적되었고 16~30%의 유기물 제거효율이 감소되었지만, 일시적 저해 영향 후 점차 안정되었다. 그러나 항생항균물질 100 mg/L에서 바이오가스 발생량이 48~58% 감소하였으며, VFAs가 메탄으로 전환되지 않고 축적되었다. 연속식 반응기에서 4종의 혼합항생항균물질을 1~10 mg/L 주입시 미생물에 대한 저해영향은 없었으며, 50 mg/L 주입시 30~40%의 메탄가스 발생량이 감소하였고, 이는 이론적 메탄발생량의 60~65% 수준이었다. 항생항균물질 100 mg/L 주입시 85% 감소한 약 2.2 L/day의 바이오가스가 발생하였으며, 서서히 회복하여 7.2 L/day까지 바이오가스가 발생하였으나 대조군 대비 52% 수준이상은 회복되지 않았다. 항생항균물질 50 mg/L에서는 독성 저해 후 반응조 체류시간의 3배인 약 30일 정도 후 유기물 제거효율 및 바이오가스 회수가 가능하였으나, 100 mg/L 주입 후 40일 후에도 유기물 제거효율 및 바이오가스 발생량은 낮은 수준이었다. 따라서 혐기성 소화조에 고농도 항생항균물질이 유입되어 저해영향이 관찰되었을 경우 소화슬러지의 일부 또는 전체를 교체해야 할 것으로 판단된다. 혼합항생항균물질을 10~100 mg/L까지 주입하였을 경우 잔류항생항균물질 농도는 주입 6시간 후 CTC 80~90%, OTC 50~70%, SMZ 80~90%, TLS 20~40%가 반응조내에서 독성으로 작용한 후 입자성 유기물이나 EPS 등에 흡착되거나 소화온도에 의하여 감소한 것으로 판단된다. 따라서 혐기성 처리를 이용한 공정에 고농도 항생항균물질이 포함된 유기성폐수가 유입되었을 경우 공정의 유지관리에 어려움을 줄 수 있으며, 혐기소화조 유출수내 잔류항생항 균물질이 자연수계로 유입될 경우 2차 오염을 야기할 수 있기 때문에 항생항균물질의 사용의 적절한 관리가 요구되어 진다.

Keywords

References

  1. Angenent, L.T., Mau, M., George, U., Zahn, J.A., Raskin, L., 2008. Effect of the presence of the antimicrobial tylosin in swine waste on anaerobic treatment, Water Res. 42, 2377-2384. https://doi.org/10.1016/j.watres.2008.01.005
  2. APHA, 1998. Standard methods for the examination of water and wastewater, 20th ed. Washington, D.C.
  3. Arikan, O.A., Sikora, L.J., Mulbry, W., Khan, S.U., Rice, C., Foster, G.D., 2006. The fate and effect of oxytetracycline during the anaerobic digestion of manure from therapeutically treated calves, Process Biochem. 41, 1637-1643. https://doi.org/10.1016/j.procbio.2006.03.010
  4. Bonmati, A., Flotats, X., Mateu, L., Campos, E., 2001. Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry, Water Sci. Technol. 44(4), 109-116.
  5. Campos, J.L., Garrido, J.M., Mendez, R., Lema, J.M., 2001. Effect of two broad spectrum antibiotics on activity and stability of continuous nitrifying system, Appl. Biochem. Biotechnol. 95, 1-10. https://doi.org/10.1385/ABAB:95:1:01
  6. Capleton, A.C., Carol, C., Paul, R., Philip, H., Edward, S., Alistair, B.A.B., Leonard, S.L., 2006. Prioritising veterinary medicines according to their potential indirect human exposure and toxicity profile, Toxicol. Lett. 163, 213-223. https://doi.org/10.1016/j.toxlet.2005.10.023
  7. Chelliapan, S., Wilby, T., Sallis, P.J., 2006. Performance of an up-flow anaerobic stage reactor (UASB) in the treatment of pharmaceutical wastewater containing macrolide antibiotics, Water Res. 40(3), 507-516. https://doi.org/10.1016/j.watres.2005.11.020
  8. Cho, M.K., Hung, T.T., Kim, D.H., Jia, Y.H., Oh, S.J., Ahn, D.H., 2007. A study on the effect of antibiotics usage to the efficiency of biological piggery wastewater treatment, Korean J. Org. Res. Recycling Associ. 15(1), 123-133.
  9. Fedler, C.B., Day, D.L., 1985. Anaerobic digestion of swine manure containing an antibiotic inhibitor, Trans. Am. Soc. Agric. Eng. 28, 523-530.
  10. Hilpert, R., Winter, J., Hammes, W., Kandler, O., 1981. The sensitivity of archaebacteria to antibiotics, Zbl. Bakt. Hyg. I Abt. Orig. C2, 11-20.
  11. Hobson, P.N., Shaw, B.G., 1976. Inhibition of methane production by Methanobacterium formicum, Water Res. 10, 849-852. https://doi.org/10.1016/0043-1354(76)90018-X
  12. Kumar, K., Gupta, S.C., Chander, Y., Singh, A.K., 2005. Antibiotic use in agriculture and their impact on the terrestrial environment, Adv. Agron. 87(1), 1-54. https://doi.org/10.1016/S0065-2113(05)87001-4
  13. Kumar, K., Thompson, A., Singh, A.K., Chander, Y., Gupta, S.C., 2004. Enzyme-linked immunosorbent assay for ultratrace determination of antibiotics in aqueous samples, J. Environ. Qual. 33, 250-256. https://doi.org/10.2134/jeq2004.0250
  14. Lallai, A., Mura, G., Onnis, N., 2002. The effects of certain antibiotics on biogas production in the anaerobic digestion of pig waste slurry, Bioresource Technol. 82, 205-208. https://doi.org/10.1016/S0960-8524(01)00162-6
  15. Lee, S.N., Hong, J.K., 2004. Analytical methods of antibiotics in food and aqueous sample, Anal. Sci. Tech. 17(6), 43A-58A.
  16. Loftin, K.A., Henny, C., Adams, C.D., Surampali, R., Mormile, M.R., 2005. Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin and tylosin tartrate, Environ. Toxicol. Chem. 24(4), 782-788. https://doi.org/10.1897/04-093R.1
  17. Masse, D.I., Lu, D., Masse, L., Droste, R.L., 2000. Effect of antibiotics on psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors, Bioresource Technol. 75, 205-211. https://doi.org/10.1016/S0960-8524(00)00046-8
  18. Park, N.B., Park, S.M., Choi, W.Y., Jun, H.B., 2009. Methane production and nitrogen removal from piggery wastewater in the TPAD coupled with BNR process, Korean Soc. Wat. Qual. 25(1), 18-25.
  19. Park, W.K., Jun, H.B., Park, N.B., Kwon, S.I., Shin, J.D., Hong, S.G., 2011. Performance evaluation and characteristic study of the single anaerobic digestion from piggery slurry, Korean J. Environ. Agric. 30(1), 31-36. https://doi.org/10.5338/KJEA.2011.30.1.31
  20. Poels, J., Vanassche, P., Verstraete, W., 1984. Effects of disinfectants and antibiotics on the anaerobicdigestion of piggery waste, Agric. Wastes. 9(4), 239-247. https://doi.org/10.1016/0141-4607(84)90083-0
  21. Sankvist, A., Hagelberg, M., Mathisen, B., 1984. Effect of antibiotics and chemotherapeutics on biogas production from piggery waste, Bioenergy. 84, 422-426.
  22. Thiele-Bruhn, S., 2003. Pharmaceutical antibiotic compounds in soils-a review, J. Plant Nutr. Soil Sci. 166, 145-167. https://doi.org/10.1002/jpln.200390023
  23. Toshio, S., Zilles, J.L., Morgenroth, E., Raskin, L., 2008. Inhibitory effects of the macrolide antimicrobial tylosin on anaerobic treatment, Biotechnol. Bioeng. 101(1), 73-82. https://doi.org/10.1002/bit.21864
  24. Van Lier, J.B., Tilche, A., Ahring, B.K., Macarie, H., Moletta, R., Dohanyo, M., Hulshoff Pol, L.W., Lens, P., Werstraete, W., 2001. New perspectives in anaerobic digestion, Water Sci. Technol. 43(1), 1-18.

Cited by

  1. Decline in Extractable Veterinary Antibiotics in Chicken Manure-Based Composts during Composting vol.45, pp.4, 2012, https://doi.org/10.7745/KJSSF.2012.45.4.628