• Title/Summary/Keyword: anaerobic archaea

Search Result 18, Processing Time 0.021 seconds

In situ Analysis of Methanogenic Bacteria in the Anaerobic Mesophilic and Thermophilic Sludge Digestion (중온 및 고온 혐기성 소화에서 메탄생성균 군집 분석에 관한 연구)

  • Hwang, Sun-Jin;Jang, Hyun-Sup;Eom, Hyoung-Choon;Jang, Kwang-Un
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.515-521
    • /
    • 2004
  • Anaerobic digestion has many advantages over the more conventional aerobic treatment processes such as low levels of excess sludge production, low space (area) requirements, and the production of valuable biogas. The purpose of this study was to evaluate the effect of organic loading rate of anaerobic digestion on thermophilic($55^{\circ}C$) and mesophilic($35^{\circ}C$) conditions. Fluorescent in situ hybridization (FISH) method was also used to study the microbial community in the reactors. The stabilizing time in mesophilic anaerobic reactors was shorter as approximately 20 days than 40 days in the thermophilic anaerobic reactors. The amount of methane production rate in anaerobic reactors was independent of the concentrations of supplied substrates and the amount of methanogens. When the microbial diversity in the mesophilic and thermophilic reactors, which had been treated with acetate-based artificial wastewater, were compared, it was found that methanogenesis was carried out by microbial consortia consisting of bacteria and archaea such as methanogens. To investigate the activity of bacterial and archaeal populations in all anaerobic reactors, the amount of acetate was measured. Archaea were predominant in all reactors. Interestingly, Methanothrix-like methanogens appeared in mesophilic anaerobic reactors with high feed substrate concentrations, whereas it was not observed in thermophilic anaerobic reactors.

Effect on nitrogen removal in the intermittent aeration system with the anaerobic archaea added (혐기성 아키아 주입이 간헐폭기 시스템에서 질소제거에 미치는 영향)

  • Lee, Sang-Hyung;Park, Noh-Back;Park, Sang-Min;Jun, Hang-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1186-1192
    • /
    • 2005
  • The relationship between bacteria and anaerobic archaea, sludge yield coefficient and nitrogen removal rate were investigated in intermittent aeration systems(I/A) with added archaea, I/A and conventional activated sludge system. As the archaea solution was added to the I/A reactor, organic removal rate as well as nitrogen removal rate increased. Also, sludge production rate in I/A system added the archaea was maintained lower than other systems because sludge yield coefficient was decreased due to the role of anaerobic archaea such as anaerobic degradation of organics. The experimental data supported the possibility of symbiotic activated sludge system with anaerobic archaea under intermittent aeration, leading to the enhanced nitrogen removal. Crucial results to be presented are: 1) specific oxygen utilization rate(SOUR) of the I/A-arch system was $2.9\;mg-O_2/(g-VSS{\cdot}min)$. SOUR and nitrification rate of the sludge from the I/A-arch system was higher than those from the I/A and A/S reactors. 2) Removal efficiencies of $TCOD_{Cr}$ in the I/A-arch, I/A and A/S reactors were 93, 90 and 87%, respectively. 3) Nitrification occurred successfully in each reactor, while denitrification rate was much higher in the I/A-arch reactor. Efficiencies of TN removal in the I/A-arch, I/A and A/S reactors were 75, 63 and 33%, respectively.

Comparative Analysis of Performance and Microbial Characteristics Between High-Solid and Low-Solid Anaerobic Digestion of Sewage Sludge Under Mesophilic Conditions

  • Lu, Qin;Yi, Jing;Yang, Dianhai
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.110-119
    • /
    • 2016
  • High-solid anaerobic digestion of sewage sludge achieves highly efficient volatile solid reduction, and production of volatile fatty acid (VFA) and methane compared with conventional low-solid anaerobic digestion. In this study, the potential mechanisms of the better performance in high-solid anaerobic digestion of sewage sludge were investigated by using 454 high-throughput pyrosequencing and real-time PCR to analyze the microbial characteristics in sewage sludge fermentation reactors. The results obtained by 454 highthroughput pyrosequencing revealed that the phyla Chloroflexi, Bacteroidetes, and Firmicutes were the dominant functional microorganisms in high-solid and low-solid anaerobic systems. Meanwhile, the real-time PCR assays showed that high-solid anaerobic digestion significantly increased the number of total bacteria, which enhanced the hydrolysis and acidification of sewage sludge. Further study indicated that the number of total archaea (dominated by Methanosarcina) in a high-solid anaerobic fermentation reactor was also higher than that in a low-solid reactor, resulting in higher VFA consumption and methane production. Hence, the increased key bacteria and methanogenic archaea involved in sewage sludge hydrolysis, acidification, and methanogenesis resulted in the better performance of high-solid anaerobic sewage sludge fermentation.

Identification of Anaerobic Thermophilic Thermococcus Dominant in Enrichment Cultures from a Hydrothermal Vent Sediment of Tofua Arc (Tofua Arc의 열수구환경으로부터 호열성 혐기성 고세균(Thermococcus)의 농화배양 및 동정)

  • Cha, In-Tae;Kim, So-Jeong;Kim, Jong-Geol;Park, Soo-Je;Jung, Man-Young;Ju, Se-Jong;Kwon, Kae-Kyoung;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.48 no.1
    • /
    • pp.42-47
    • /
    • 2012
  • Hydrothermal vents (HTV) provide special environments for evolution of lives independent on solar energy. HTV samples were gained from Tofua arc trench in Tonga, South Pacific. We investigated archaeal diversity enriched using combinations of various electron donors (yeast extract and $H_2$) and electron acceptors [Iron (III), elemental sulfur ($S^0$) and nitrate. PCR amplification was performed to detect archaeal 16S rRNA genes after the cultures were incubated $65^{\circ}C$ and $80^{\circ}C$ for 2 weeks. The cultures showing archaeal growth were transferred using the dilution-to-extinction method. 16S rRNA gene PCR-Denaturing Gradient Gel Electrophoresis was used to identify the enriched archaea in the highest dilutions where archaeal growth was observed. Most of cultured archaea belonged to genus of Thermococcus (T. alcaliphilius, T. litoralis, T. celer, T. barossii, T. thoreducens, T. coalescens) with 98-99% 16S rRNA gene similarities. Interestingly, archaeal growth was observed in the cultures with Iron (III) and nitrate as an electron acceptor. It was supposed that archaea might use the elemental sulfur generated from oxidation of the reducing agent, sulfide. To cultivate diverse archaea excluding Thermococcus, it would be required to use other reducing agents instead of sulfide.

Microbial Community Diversity in Anaerobic Reactors Digesting Turkey, Chicken, and Swine Wastes

  • Ziganshina, Elvira E.;Belostotskiy, Dmitry E.;Shushlyaev, Roman V.;Miluykov, Vasili A.;Vankov, Petr Y.;Ziganshin, Ayrat M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1464-1472
    • /
    • 2014
  • The microbial community structures of two continuous stirred tank reactors digesting turkey manure with pine wood shavings as well as chicken and swine manure were investigated. The reactor fed with chicken/swine wastes displayed the highest organic acids concentration (up to 15.2 g/l) and ammonia concentration (up to 3.7 g/l ammonium nitrogen) and generated a higher biogas yield (up to $366ml/g_{VS}$) compared with the reactor supplied with turkey wastes (1.5-1.8 g/l of organic acids and 1.6-1.7 g/l of ammonium levels; biogas yield was up to $195ml/g_{VS}$). The microbial community diversity was assessed using both sequencing and profiling terminal restriction fragment length polymorphisms of 16S rRNA genes. Additionally, methanogens were analyzed using methyl coenzyme M reductase alpha subunit (mcrA) genes. The bacterial community was dominated by members of unclassified Clostridiales with the prevalence of specific clostridial phylotypes in each reactor, indicating the effect of the substrate type on the community structure. Of the methanogenic archaea, methanogens of the genus Methanosarcina were found in high proportions in both reactors with specific methanosarcinas in each reactor, whereas the strict hydrogenotrophic methanogens of Methanoculleus sp. were found at significant levels only in the reactor fed with chicken/swine manure (based on the analyses of 16S rRNA gene). This suggests that among methanogenic archaea, Methanosarcina species which have different metabolic capabilities, including aceticlastic and hydrogenotrophic methanogenesis, were mainly involved in anaerobic digestion of turkey wastes.

Diversity and Distribution of Methanogenic Archaea in an Anaerobic Baffled Reactor (ABR) Treating Sugar Refinery Wastewater

  • Li, Jianzheng;Zhang, Liguo;Ban, Qiaoying;Jha, Ajay Kumar;Xu, Yiping
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.137-143
    • /
    • 2013
  • The diversity and distribution of methanogenic archaea in a four-compartment anaerobic baffled reactor (ABR) treating sugar refinery wastewater were investigated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). At an organic loading rate of 5.33 kg $COD/m^3{\cdot}day$, the ABR could perform steadily with the mean chemical oxygen demand (COD) removal of 94.8% and the specific $CH_4$ yield of 0.21 l/g $COD_{removed}$. The $CH_4$ content in the biogas was increased along the compartments, whereas the percentage of $H_2$ was decreased, indicating the distribution characteristics of the methanogens occurred longitudinally down the ABR. A high phylogenetic and ecological diversity of methanogens was found in the ABR, and all the detected methanogens were classified into six groups, including Methanomicrobiales, Methanosarcinales, Methanobacteriales, Crenarchaeota, Arc I, and Unidentified. Among the methanogenic population, the acid-tolerant hydrogenotrophic methanogens including Methanoregula and Methanosphaerula dominated the first two compartments. In the last two compartments, the dominant methanogenic population was Methanosaeta, which was the major acetate oxidizer under methanogenic conditions and could promote the formation of granular sludge. The distribution of the hydrogenotrophic (acid-tolerant) and acetotrophic methanogens in sequence along the compartments allowed the ABR to perform more efficiently and steadily.

Isolation and characterization analysis of the halophilic archaea isolated from solar saltern, Gomso (곰소 염전에서 분리한 호염성 고세균의 특성 분석)

  • Koh, Hyeon-Woo;Kim, So-Jeong;Rhee, Sung-Keun;Park, Soo-Je
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.427-434
    • /
    • 2015
  • Most of halophilic archaea are found in the various hypersaline environments including solar saltern, salt lake with very high salt concentration. The present study is about isolation and characterization of halphilic archaea from Gomso solar saltern known as a representative high salt environment in Korea. In order to isolate the halophilic archaea, we prepared and used high salt medium. Finally, total 7 strains obtained were tentatively identified based on comparative similarity analysis for 16S rRNA gene sequence and physiological traits. All halophilic archaea belonged to Haloruburm, Halogeometriucm, Halobacterium, and Haloarcula genera. These isolates were all Gram-staining negative, and growth was not observed using nitrate as an alternative electron acceptor under anaerobic conditions. In addition, all isolates required about 12-30% (w/v, NaCl) salt. This case study might provide basic information on microbial isolation technologies and related research in halophilic microorganisms from domestic halophilic environments, and contribute to obtaining useful indigenous halophilic archaea in a variety of extreme environmental conditions.

Microbial Diversity in Three-Stage Methane Production Process Using Food Waste (음식물 쓰레기를 이용한 3단계 메탄생산 공정의 미생물 다양성)

  • Nam, Ji-Hyun;Kim, Si-Wouk;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.125-133
    • /
    • 2012
  • Anaerobic digestion is an alternative method to digest food wastes and to produce methane that can be used as a renewable energy source. We investigated bacterial and archaeal community structures in a three-stage methane production process using food wastes with concomitant wastewater treatment. The three-stage methane process is composed of semianaerobic hydrolysis/acidogenic, anaerobic acidogenic, and strictly anaerobic methane production steps in which food wastes are converted methane and carbon dioxide. The microbial diversity was determined by the nucleotide sequences of 16S rRNA gene library and quantitative real-time PCR. The major eubacterial population of the three-stage methane process was belonging to VFA-oxidizing bacteria. The archaeal community consisted mainly of two species of hydrogenotrophic methanogen (Methanoculleus). Family Picrophilaceae (Order Thermoplasmatales) was also observed as a minor population. The predominance of hydrogenotrophic methanogen suggests that the main degradation pathway of this process is different from the classical methane production systems that have the pathway based on acetogenesis. The domination of hydrogenotrophic methanogen (Methanoculleus) may be caused by mesophilic digestion, neutral pH, high concentration of ammonia, short HRT, and interaction with VFA-oxidizing bacteria (Tepidanaerobacter etc.).

Microbial ecology of the anaerobic and aerobic ammonia-oxidizers in full-scale wastewater treatment systems (하수처리장에서의 암모니아 전환 미생물군의 생태학적 연구)

  • Park, Hong-Keun;Kim, Young-Mo;Lee, Jae-Woo;Kim, Sung-Pyo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.399-408
    • /
    • 2012
  • The overall goal of this study was to characterize and quantify ammonia-oxidizing bacteria (AOB) in four different full-scale sequence batch reactor (SBR) wastewater treatment plants. Also, this study focused on assessing the occurrence of the alternative ammonia-oxidizing microbes such as anammox (anaerobic ammonia oxidation) bacteria (AMX) and ammonia-oxidizing archaea (AOA) in these systems. Based on total AOB numbers and the estimated cell density in the mixed liquor samples, AOB constituted 0.3 - 1.8% of the total bacterial population in the four WWTPs. Based on clone library, Nitrosomonas ureae-like AOB were dominant in plant A and B, while plant C and D had Nitrosomonas nitrosa-like AOB as major AOB group. The four different AMX primer sets targeting AMX 16S rRNA gene produced PCR amplicons distantly related to Chlamydia and Planctomycetales group bacteria. However, it was not clear these groups of bacteria perform anammox reaction in the SBR plants. Also, molecular evidence of AOA was found in one of the SBR plants, with a sequence located in the deep branch of the sediment creanarchaeota group.

Characterization of Interphase Microbial Community in Luzhou-Flavored Liquor Manufacturing Pits of Various Ages by Polyphasic Detection Methods

  • Li, Hui;Huang, Jun;Liu, Xinping;Zhou, Rongqing;Ding, Xiaofei;Xiang, Qianyin;Zhang, Liqiang;Wu, Chongde
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.130-140
    • /
    • 2017
  • It is vital to understand the changing characteristics of interphase microbial communities and interspecies synergism during the fermentation of Chinese liquors. In this study, microbial communities in the three indispensable phases (pit mud, zaopei, and huangshui) of Luzhou-flavored liquor manufacturing pits and their shifts during cellars use were first investigated by polyphasic culture-independent approaches. The archaeal and eubacterial communities in the three phases were quantitatively assessed by combined phospholipid ether lipids/phospholipid fatty acid analysis and fluorescence in situ hybridization. In addition, qualitative information regarding the microbial community was analyzed by PCR-denaturing gradient gel electrophoresis. Results suggested that the interphase microbial community profiles were quite different, and the proportions of specific microbial groups evolved gradually. Anaerobic bacteria and gram-positive bacteria were dominant and their numbers were higher in pit mud ($10^9$ cells/g) than in huangshui ($10^7$ cells/ml) and zaopei ($10^7$ cells/g). Hydrogenotrophic methanogenic archaea were the dominant archaea, and their proportions were virtually unchanged in pit mud (around 65%), whereas they first increased and then decreased in zaopei (59%-82%-47%) and increased with pit age in huangshui (82%-92%). Interactions between microbial communities, especially between eubacteria and methanogens, played a key role in the formation of favorable niches for liquor fermentation. Furthermore, daqu (an essential saccharifying and fermentative agent) and metabolic regulation parameters greatly affected the microbial community.