DOI QR코드

DOI QR Code

Isolation and characterization analysis of the halophilic archaea isolated from solar saltern, Gomso

곰소 염전에서 분리한 호염성 고세균의 특성 분석

  • Koh, Hyeon-Woo (Department of Biology, Jeju National University) ;
  • Kim, So-Jeong (Department of Microbiology, Chungbuk National University) ;
  • Rhee, Sung-Keun (Department of Microbiology, Chungbuk National University) ;
  • Park, Soo-Je (Department of Biology, Jeju National University)
  • Received : 2015.08.26
  • Accepted : 2015.10.02
  • Published : 2015.12.31

Abstract

Most of halophilic archaea are found in the various hypersaline environments including solar saltern, salt lake with very high salt concentration. The present study is about isolation and characterization of halphilic archaea from Gomso solar saltern known as a representative high salt environment in Korea. In order to isolate the halophilic archaea, we prepared and used high salt medium. Finally, total 7 strains obtained were tentatively identified based on comparative similarity analysis for 16S rRNA gene sequence and physiological traits. All halophilic archaea belonged to Haloruburm, Halogeometriucm, Halobacterium, and Haloarcula genera. These isolates were all Gram-staining negative, and growth was not observed using nitrate as an alternative electron acceptor under anaerobic conditions. In addition, all isolates required about 12-30% (w/v, NaCl) salt. This case study might provide basic information on microbial isolation technologies and related research in halophilic microorganisms from domestic halophilic environments, and contribute to obtaining useful indigenous halophilic archaea in a variety of extreme environmental conditions.

대부분의 호염성 고세균은 고염환경으로 알려진 천일염전(solar saltern), 염호수(salt lake)를 비롯한 다양한 환경에서 서식하고 있다고 알려져 있다. 본 연구에서는, 한국의 대표적인 고염환경으로부터 분리배양을 통하여 호염성 고세균의 특성 분석을 실시하였다. 호염성 미생물들을 분리하기 위하여, 고염배지를 제작하고, 총 7개의 순수 배양체를 확보하였다. 분리된 호염성 미생물들의 16S rRNA 유전자 서열에 대한 계통학 및 상동성 분석을 실시하여 Halorubrum 속의 미생물 4종, Halogeometricum 속의 미생물 1종, Halobacterium 속의 미생물 1종, Haloarcula 속의 미생물 1종을 각각 확보 할 수 있었다. 이들 호염성 고세균들은 모두 그람 음성균이며, nitrate를 전자수용체로 사용한 혐기적 조건에서 성장이 관찰되지 않았다. 또한, 분리된 모든 미생물들은 12-30% (w/v, NaCl) 염분을 필요로 하였다. 본 연구는 국내의 호염환경으로 부터 호염성미생물의 분리기술 및 관련 연구에 대한 기초적 정보를 제공하며, 국내의 다양한 극한환경에서 서식하는 미생물 배양체 확보를 통하여 국내 생물자원 확보에 기여할 것으로 기대한다.

Keywords

References

  1. Bonfa, M.R., Grossman, M.J., Mellado, E., and Durrant, L.R. 2011. Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84, 1671-1676. https://doi.org/10.1016/j.chemosphere.2011.05.005
  2. Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P. 2008. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245-252. https://doi.org/10.1038/nrmicro1852
  3. Castelle, C.J., Wrighton, K.C., Thomas, B.C., Hug, L.A., Brown, C.T., Wilkins, M.J., Frischkorn, K.R., Tringe, S.G., Singh, A., Markillie, L.M., et al. 2015. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690-701. https://doi.org/10.1016/j.cub.2015.01.014
  4. DeLong, E.F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 5685-5689. https://doi.org/10.1073/pnas.89.12.5685
  5. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368-376. https://doi.org/10.1007/BF01734359
  6. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406-416. https://doi.org/10.2307/2412116
  7. Grant, W.D., Kamekura, M., McGenity, T.J., and Ventosa, A. 2001. Class III. Halobacteria class. nov. The Archaea and the Deeply Branching and Phototrophic Bacteria. In Boone, D.R., Castenholz, R.W., and Garrity, G.M. (eds.), Bergey's Manual of Systematic Bacteriology, 2 (ed.)Vol. 1, pp. 294-334. Springer-Verlag, New York, USA.
  8. Guy, L. and Ettema, T.J. 2011. The archaeal 'TACK' superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580-587. https://doi.org/10.1016/j.tim.2011.09.002
  9. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
  10. Oren, A. 2014. Taxonomy of halophilic Archaea: current status and future challenges. Extremophiles 18, 825-834. https://doi.org/10.1007/s00792-014-0654-9
  11. Oren, A. 2015. Halophilic microbial communities and their environments. Curr. Opin. Biotechnol. 33, 119-124. https://doi.org/10.1016/j.copbio.2015.02.005
  12. Oren, A., Ventosa, A., and Grant, W. 1997. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int. J. Syst. Evol. Microbiol. 47, 233-238.
  13. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  14. Sehgel, S.N. and Gibbons, N.E. 1960. Effect of some metal ions on the growth of Halobacterium cutirubrum. Can. J. Microbiol. 6, 165-169. https://doi.org/10.1139/m60-018
  15. Smibert, R.M. and krieg, N.R. 1994. Phenotypic characterization. In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Kreig, N.R. (eds.), Methods for general and molecular bacteriology, Vol. 1325, pp. 607-654. American Society for Microbiology, Washington, D.C., USA.
  16. Spang, A., Martijn, J., Saw, J.H., Lind, A.E., Guy, L., and Ettema, T.J. 2013. Close encounters of the third domain: the emerging genomic view of archaeal diversity and evolution. Archaea 2013, 202358.
  17. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  18. Ventosa, A., Nieto, J.J., and Oren, A. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504-544.
  19. Ventosa, A., Quesada, F., Rodriiguez, F.V., Ruiz, B.Q.F., and Ramos, C.A. 1982. Numerical taxonomy of moderately Gram negative rods. J. Gen. Microbiol. 128, 1959-1968.
  20. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  21. Widdel, F. and Bak, F. 1992. Gram-negative mesophilic sulfatereducing bacteria, pp. 3352-3378. In Balows, A., Truper, H., Dworkin, M., Harder, W., and Schleifer, K.H. (eds.), The Prokaryotes. Springer New York, USA.
  22. Woese, C.R. and Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 5088-5090. https://doi.org/10.1073/pnas.74.11.5088
  23. Woese, C.R., Kandler, O., and Wheelis, M.L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87, 4576-4579. https://doi.org/10.1073/pnas.87.12.4576

Cited by

  1. 토판염전 결정지 내 세균군집의 계통학적 다양성 및 Culturomics법을 이용한 고도 호염균의 분리 vol.53, pp.1, 2015, https://doi.org/10.7845/kjm.2017.7011
  2. 국내 폐광산 및 제주 곶자왈 지역내의 미생물 분리 및 특징 분석 vol.53, pp.4, 2015, https://doi.org/10.7845/kjm.2017.7010