• Title/Summary/Keyword: an integrally closed domain

Search Result 16, Processing Time 0.016 seconds

Normal Pairs of Going-down Rings

  • Dobbs, David Earl;Shapiro, Jay Allen
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Let (R, T) be a normal pair of commutative rings (i.e., R ${\subseteq}$ T is a unita extension of commutative rings, not necessarily integral domains, such that S is integrally closed in T for each ring S such that R ${\subseteq}$ S ${\subseteq}$ T) such that the total quotient ring of R is a von Neumann regular ring. Let P be one of the following ring-theoretic properties: going-down ring, extensionally going-down (EGD) ring, locally divided ring. Then R has P if and only if T has P. An example shows that the "if" part of the assertion fails if P is taken to be the "divided domain" property.

GRADED INTEGRAL DOMAINS IN WHICH EACH NONZERO HOMOGENEOUS IDEAL IS DIVISORIAL

  • Chang, Gyu Whan;Hamdi, Haleh;Sahandi, Parviz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1041-1057
    • /
    • 2019
  • Let ${\Gamma}$ be a nonzero commutative cancellative monoid (written additively), $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}$ $R_{\alpha}$ be a ${\Gamma}$-graded integral domain with $R_{\alpha}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma}$, and $S(H)=\{f{\in}R{\mid}C(f)=R\}$. In this paper, we study homogeneously divisorial domains which are graded integral domains whose nonzero homogeneous ideals are divisorial. Among other things, we show that if R is integrally closed, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is an h-local $Pr{\ddot{u}}fer$ domain whose maximal ideals are invertible, if and only if R satisfies the following four conditions: (i) R is a graded-$Pr{\ddot{u}}fer$ domain, (ii) every homogeneous maximal ideal of R is invertible, (iii) each nonzero homogeneous prime ideal of R is contained in a unique homogeneous maximal ideal, and (iv) each homogeneous ideal of R has only finitely many minimal prime ideals. We also show that if R is a graded-Noetherian domain, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is a divisorial domain of (Krull) dimension one.

RADICALLY PRINCIPAL IDEAL RINGS

  • Gyu Whan Chang;Sangmin Chun
    • The Pure and Applied Mathematics
    • /
    • v.30 no.4
    • /
    • pp.397-406
    • /
    • 2023
  • Let R be a commutative ring with identity, X be an indeterminate over R, and R[X] be the polynomial ring over R. In this paper, we study when R[X] is a radically principal ideal ring. We also study the t-operation analog of a radically principal ideal domain, which is said to be t-compactly packed. Among them, we show that if R is an integrally closed domain, then R[X] is t-compactly packed if and only if R is t-compactly packed and every prime ideal Q of R[X] with Q ∩ R = (0) is radically principal.

ON A GENERALIZATION OF ⊕-SUPPLEMENTED MODULES

  • Turkmen, Burcu Nisanci;Davvaz, Bijan
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.531-538
    • /
    • 2019
  • We introduce FI-${\oplus}$-supplemented modules as a proper generalization of ${\oplus}$-supplemented modules. We prove that; (1) every finite direct sum of FI-${\oplus}$-supplemented R-modules is an FI-${\oplus}$-supplemented R-module for any ring R ; (2) if every left R-module is FI-${\oplus}$-supplemented over a semilocal ring R, then R is left perfect; (3) if M is a finitely generated torsion-free uniform R-module over a commutative integrally closed domain such that every direct summand of M is FI-${\oplus}$-supplemented, then M is a direct sum of cyclic modules.

A NOTE ON w-GD DOMAINS

  • Zhou, Dechuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1351-1365
    • /
    • 2020
  • Let S and T be w-linked extension domains of a domain R with S ⊆ T. In this paper, we define what satisfying the wR-GD property for S ⊆ T means and what being wR- or w-GD domains for T means. Then some sufficient conditions are given for the wR-GD property and wR-GD domains. For example, if T is wR-integral over S and S is integrally closed, then the wR-GD property holds. It is also given that S is a wR-GD domain if and only if S ⊆ T satisfies the wR-GD property for each wR-linked valuation overring T of S, if and only if S ⊆ (S[u])w satisfies the wR-GD property for each element u in the quotient field of S, if and only if S𝔪 is a GD domain for each maximal wR-ideal 𝔪 of S. Then we focus on discussing the relationship among GD domains, w-GD domains, wR-GD domains, Prüfer domains, PνMDs and PwRMDs, and also provide some relevant counterexamples. As an application, we give a new characterization of PwRMDs. We show that S is a PwRMD if and only if S is a wR-GD domain and every wR-linked overring of S that satisfies the wR-GD property is wR-flat over S. Furthermore, examples are provided to show these two conditions are necessary for PwRMDs.

THE KRONECKER FUNCTION RING OF THE RING D[X]N*

  • Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.907-913
    • /
    • 2010
  • Let D be an integrally closed domain with quotient field K, * be a star operation on D, X, Y be indeterminates over D, $N_*\;=\;\{f\;{\in}\;D[X]|\;(c_D(f))^*\;=\;D\}$ and $R\;=\;D[X]_{N_*}$. Let b be the b-operation on R, and let $*_c$ be the star operation on D defined by $I^{*_c}\;=\;(ID[X]_{N_*})^b\;{\cap}\;K$. Finally, let Kr(R, b) (resp., Kr(D, $*_c$)) be the Kronecker function ring of R (resp., D) with respect to Y (resp., X, Y). In this paper, we show that Kr(R, b) $\subseteq$ Kr(D, $*_c$) and Kr(R, b) is a kfr with respect to K(Y) and X in the notion of [2]. We also prove that Kr(R, b) = Kr(D, $*_c$) if and only if D is a $P{\ast}MD$. As a corollary, we have that if D is not a $P{\ast}MD$, then Kr(R, b) is an example of a kfr with respect to K(Y) and X but not a Kronecker function ring with respect to K(Y) and X.