DOI QR코드

DOI QR Code

RADICALLY PRINCIPAL IDEAL RINGS

  • Gyu Whan Chang (Department of Mathematics Education, Incheon National University) ;
  • Sangmin Chun (Da Vinci College of General Education, Chung-Ang University)
  • Received : 2023.04.15
  • Accepted : 2023.06.10
  • Published : 2023.11.30

Abstract

Let R be a commutative ring with identity, X be an indeterminate over R, and R[X] be the polynomial ring over R. In this paper, we study when R[X] is a radically principal ideal ring. We also study the t-operation analog of a radically principal ideal domain, which is said to be t-compactly packed. Among them, we show that if R is an integrally closed domain, then R[X] is t-compactly packed if and only if R is t-compactly packed and every prime ideal Q of R[X] with Q ∩ R = (0) is radically principal.

Keywords

Acknowledgement

The authors would like to thank the anonymous referee for his/her helpful comments and useful suggestions which improved the original version of this paper greatly. Chang was supported by the Incheon National University research grant in 2021.

References

  1. D.D. Anderson & S. Chun: Some remarks on principal prime ideals. Bull. Aust. Math. Soc. 83 (2011), 130-137. https://doi.org/10.1017/S000497271000170X 
  2. D.D. Anderson & R. Markanda: Unique factorization rings with zero divisors. Houston J. Math. 11 (1985), 15-30. 
  3. D.F. Anderson & G.W. Chang: Almost splitting sets in integral domains. II. J. Pure Appl. Algebra 208 (2007), 351-359. https://doi.org/10.1016/j.jpaa.2006.01.006 
  4. M. Aqalmoun & M. El Ouarrachi: Radically principal rings. Khayyam J. Math. 6 (2020), 243-249. 
  5. A. Benobaid & A. Minouni: Compact and coprime packedness with respect to star operations. Houston J. Math. 37 (2011), 1043-1061. 
  6. G.W. Chang & S. Chun: How many prime polynomials are there in a polynomial ring?. submitted. 
  7. G.W. Chang & C.J. Hwang: Covering and intersection conditions for prime ideals. Korean J. Math. 17 (2009), 15-23. 
  8. G.W. Chang & H. Kim: Radical perfectness of prime ideals in certain integral domains. J. Commutative Algebra 9 (2017), 31-48. https://doi.org/10.1216/JCA-2017-9-1-31 
  9. H. Chimal-Dzul & C.A. Lopez-Andrade: When is R[x] a principal ideal ring ?. Rev. Integr. Temas Mat. 35 (2017), 143-148. https://dx.doi.org/10.18273/revint.v35n2-2017001 
  10. C.R. Fletcher: The structure of unique factorization rings. Proc. Cambridge Philos. Soc. 67 (1970), 535-540. https://doi.org/10.1017/S0305004100045825 
  11. C.R. Fletcher: Equivalent conditions for unique factorization. Publ. D'ep. Math. (Lyon) 8 (1971), 13-22. 
  12. R. Fossum: The Divisor Class Group of a Krull Domain. Springer-Verlag, New York/Berlin, 1973. 
  13. R. Gilmer & W. Heinzer: Primary ideals with finitely generated radical in a commutative ring. Manuscripta Math. 78 (1993), 201-221. https://doi.org/10.1007/BF02599309 
  14. E. Houston & M. Zafrullah: Integral domains in which each t-ideal is divisorial. Michigan Math. J. 35 (1988), 291-300. https://doi.org/10.1307/mmj/1029003756 
  15. E. Houston & M. Zafrullah: On t-invertibility II. Comm. Algebra 17 (1989), 1955-1969. https://doi.org/10.1080/00927878908823829 
  16. B.G. Kang: Prufer v-multiplication domains and the ring $R[X]_{N_v}$. J. Algebra 123 (1989), 151-170. https://doi.org/10.1016/0021-8693(89)90040-9 
  17. H. Kim: Overrings of t-comprimely packed domains. J. Korean Math. Soc. 48 (2011), 191-205. https://doi.org/10.4134/JKMS.2011.48.1.191 
  18. S. Oda: Radically principal and almost factorial. Bull. Fac. Sci. Ibaraki Univ. Ser. A 26 (1994), 17-24. https://doi.org/10.5036/bfsiu1968.26.17 
  19. C.M. Reis & T.M. Viswanathan: A compactness property for prime ideals in Noetherian rings. Proc. Amer. Math. Soc. 25 (1970), 353-356. https://doi.org/10.1090/S0002-9939-1970-0254031-6 
  20. W. Smith: A covering condition for prime ideals. Proc. Amer. Math. Soc. 30 (1971), 451-452.  https://doi.org/10.1090/S0002-9939-1971-0282963-2
  21. M. Zafrullah: A general theory of almost factoriality. Manuscripta Math. 51 (1985), 29-62.  https://doi.org/10.1007/BF01168346
  22. O. Zariski & P. Samuel: Commutative Algebra. vol. I, Van Nostrand, Princeton, 1960.