• Title/Summary/Keyword: an algebraic approach

Search Result 105, Processing Time 0.024 seconds

An Algebraic Approach to Optimal Control using STWS (STWS를 이용한 최적제어의 대수적 접근에 관한 연구)

  • 오현철;김윤상;안두수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.561-566
    • /
    • 1998
  • This paper presents an algebraic approach to optimal control for time invariant continuous system using STWS(single term Walsh series). In optimal control, it is well known that the design problem with quadratic performance criteria often involves the determination of time-varying feedback gain matrix by solving the matrix nonlinear Riccati equation and of command signal by solving the integral equation, which makes design procedure quite difficult. Therefore, in order to resolve this problem, this paper is introduced to STWS. In this paper, the time-varying feedback gains and command signals are determined by piecewise constant gains which can be easily obtained from algebraic equation using STWS.

  • PDF

Algebraic approach for unknown inputs observer via Haar function (Haar 함수를 이용한 대수적 미지입력관측기 설계)

  • Ahn, P.;Kang, K.W.;Kim, H.K.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2086-2088
    • /
    • 2002
  • This paper deals with an algebraic approach for unknown inputs observer by using Haar functions. In the algebraic UIO(unknown input observer) design procedure, coordinate transformation method is adopted to derive the reduced order dynamic system which is decoupled unknown inputs and Haar function and its integral operational matrix is applied to avoid additional differentiation of system outputs.

  • PDF

FDI observer design for linear system via STWS

  • Ahn, Pius;Kim, Min-Hyung;Kim, Jae-Il;Lee, Moon-Hee;Ahn, Doo-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1423-1427
    • /
    • 1997
  • This paper deals with an algebraic approach to FDI observer design procedure. In general, FDI observer can be designed a sLuenbrger-type and equations for unknown input and actuator fault estimation include derivation of system outputs which is not available from the measurement directly. At this point, this paper presents STWS approach which can convert the derivation procedure to the recursive algebraic form by using its orthogonality and disjointess to alleviate such problems.

  • PDF

A Modular Formulation for Flexible Multibody Systems Including Nonlinear Finite Elements

  • Kubler Lars;Eberhard Peter
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.461-472
    • /
    • 2005
  • A formulation for flexible multibody systems (MBS) is investigated, where rigid MBS substructures are coupled with flexible bodies described by a nonlinear finite element (FE) approach. Several aspects that turned out to be crucial for the presented approach are discussed. The system describing equations are given in differential algebraic form (DAE), where many sophisticated solvers exist. In this paper the performance of several solvers is investigated regarding their suitability for the application to the usually highly stiff DAE. The substructures are connected with each other by nonlinear algebraic constraint equations. Further, partial derivatives of the constraints are required, which often leads to extensive algebraic trans-formations. Handcoding of analytically determined derivatives is compared to an approach utilizing algorithmic differentiation.

Unknown Inputs Observer Design Via Block Pulse Functions

  • Ahn, Pius
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.205-211
    • /
    • 2002
  • Unknown inputs observer(UIO) which is achieved by the coordinate transformation method has the differential of system outputs in the observer and the equation for unknown inputs estimation. Generally, the differential of system outputs in the observer can be eliminated by defining a new variable. But it brings about the partition of the observer into two subsystems and need of an additional differential of system outputs still remained to estimate the unknown inputs. Therefore, the block pulse function expansions and its differential operation which is a newly derived in this paper are presented to alleviate such problems from an algebraic form.

An Algebraic Approach to Validation of Class Diagram with Constraints

  • Munakata, Kazuki;Futatsugi, Kokichi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.920-923
    • /
    • 2002
  • In this paper, we propose Class Diagram With Constraints (CDWC) as an object oriented modeling technique which makes validation possible in software development. CDWC is a simple and basic model for the object oriented analysis, and has a reasonable strictness for software developers. CDWC consists of class diagrams and constraints (invariant and pre/post conditions), using UML and a subset of OCL.. We introduce a method of validation of CDWC using the verification technique of algebraic formal specification language CafeOBJ.

  • PDF

THE CAYLEY-BACHARACH THEOREM VIA TRUNCATED MOMENT PROBLEMS

  • Yoo, Seonguk
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.741-747
    • /
    • 2021
  • The Cayley-Bacharach theorem says that every cubic curve on an algebraically closed field that passes through a given 8 points must contain a fixed ninth point, counting multiplicities. Ren et al. introduced a concrete formula for the ninth point in terms of the 8 points [4]. We would like to consider a different approach to find the ninth point via the theory of truncated moment problems. Various connections between algebraic geometry and truncated moment problems have been discussed recently; thus, the main result of this note aims to observe an interplay between linear algebra, operator theory, and real algebraic geometry.

An Efficient Approach in Analyzing Linear Time-Varying Systems via Taylor Polynomials (Taylor 다항식에 의한 선형 시변 시스템의 효과적인 해석)

  • Lee, Hai-Young;Bien, Zeung-Nam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1166-1172
    • /
    • 1988
  • This paper presents an efficient method of analyzing linear time-varying systems via Taylor polynomials. While the approach suggested by Sparis and Mouroutsos gives an implicit form for unknown state vector and requires to solve a linear algebraic equation with large dimension when the number of terms increases, the method proposed in this paper shows an explicit form and has no need to solve any linear algebraic equation.

  • PDF