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Unknown Inputs Observer Design Via Block Pulse Functions

Pius Ahn

Abstract: Unknown inputs observer(UIO) which is achieved by the coordinate transformation method has the differential of system
outputs in the observer and the equation for unknown inputs estimation. Generally, the differential of system outputs in the observer
can be eliminated by defining a new variable. But it brings about the partition of the observer into two subsystems and need of an
additional differential of system outputs still remained to estimate the unknown inputs. Therefore, the block pulse function expansions
and its differential operation which is a newly derived in this paper are presented to alleviate such problems from an algebraic form.
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I. Introduction

Over the last decade there have been much interests in un-
known inputs observer(UIO) design since it is directly appli-
cable to decentralized observer, process supervision, and in-
strument failure detection. Many researchers who have in-
terests in UIO design procedure proposed various approaches.
They are geometric approach[1], singular value decomposition
method[2], and direct design method[3]. Recently, the coordi-
nate transformation method[4], [5], [6] is mostly used in UIO
design procedure by reason that it gives systematic guideline
than the other methods. But, in this method, there are some
problems that the derived observer and the equation for un-
known input estimation have the differential of the system out-
puts. In this case, an additional differentiator is needed to have
an information of differentiated system outputs and it would
be disadvantageous in the economic and practical design view-
points. To alleviate these problems, this paper proposes an al-
gebraic method which does not need any differential of the sys-
tem outputs to design an observer and estimate the unknown
inputs. It is achieved by using block pulse function(BPF)[8]
expansions and its differential operation which are newly de-
rived in this paper on the basis of BPF’s orthogonal and disjoint
properties. Kraus and Schaufelberger[7] proposed the differ-
ential operation of block pulse function, but it is achieved by
approximating the calculus of variations without any interest of
BPF’s orthogonal property. This paper is constituted as follows.
In Section II, BPF is explained and its differential operation is
derived. The coordinate transformation method for UIO design
is introduced in section I11-1 and the application of BPF expan-
sions are presented in section III-2. Lastly, numerical examples
are presented to check the experimental results for the proposed
method in section I'V.

1L Derivation of BPF’s differential operation
1. Brief review of BPF
Block pulse functions set ®(t) = [¢1(t)g2(t) ... dm(t)]T
is a set of piecewise constant function and defined in the time
interval [0,¢¢) as follows.
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In the equation (1), m is the BPF’s expansion number. BPF
has the following orthogonal and disjoint properties.
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If an arbitrary function f(¢) is absolutely integrable in the in-
terval [0, ¢5), it can be approximated by using BPF expansions
as follows.

m
OB A0 )
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F; is a coefficient of the i-th block pulse function. In the
equation (4), the i-th BPF’s coefficient F; of an arbitrary func-
tion f(¢) is determined as follows.
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The approximation of the forward integral of BPF is
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2. BPF’s differential operation
Similar to (4), if a differential of f(t) is absolutely integrable
in the intervai [0, ¢}, it can be also approximated as (7) by using
a BPF expansions [9] as follows.

fO) = Figult) @)

4=1
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The interest of (7) is how to obtain a coefficient F.. Many
researchers resolved the problem by approximating a calculus
of variation viewpoints such as (8).

(&) = limag—o L0FE0=10)
m . t .t
2 IFG DY - fEE)]

where, At = % andi=1,2,.--,m—1

But, in this paper, a coefficient F; is obtained on the basis of
BPF’s orthogonal and disjoint properties. To obtain a recursive
algorithm for the BPF’s coefficients of f(t) described by F and
f(0) which are f(t)'s BPF coefficients and their initial value
respectively, let us integrate f(t) in the interval [0, t).

®

/ f(r)dr = f(t) — £(0) )
o

Equation (9) can be represented as (10) by using BPF expan-
sions

S F ) ¢i(r)dr
=Y Fii(t) = 3o, £(0)ei(t) 10
where, f(t) = 3 Figu(t)
Substituting (6) in (10), we can obtain a equation as follow-

ing,

Ein;l Fi[zt_rﬁ@(t) + tHf Z?:H»l i (t)]

(1D
=3 i Figi(t) — 327, f(0)ou(t)
Expanding (11) such as (12)
L ox {Fs (361(8) + d2() + - + $m(2))
+Fz (362(2) + @3(8) + -+ dm(t))
o+ Fi (50u(t) + dira(t) + - + dm(t))
+Fiy (36i41(8) + Giva() + - + dm(t)) (12)

© B (Gom(8) )
=F1¢1(t) + Fao + - + Fnom(2)
—f(0)[p1(2) + @2(t) + - + Sm(?)]

By multiplying ¢1(t), d2(t), - - -, dm(t) to (12) sequentially
and applying BPF’s disjoint property, (12) can be deduced as
(13)

sLF =F; — f(0)

L (Fy + 5F2) = F2 — £(0)

U(F 4 Fo+-+F+3F)=F - f0) (13
(R + Fa o+ Bt $Fin) = B — £(0)

%(F1+F2+"'+Fm—1+%Fm)sz_‘f(O)

Then arranging (13) for F;, we can obtain (14).

Fi = 22(F; — £(0)]
Fi+1 = i—T[FH-l - Fi] - Fz (14)
for,i=1,2,--- m—1

In (1), the f (t)'s i-th BPF coefficient F; can be obtained
by using F; and f(0) , recursively. And (15) is the generalized
form of (14).

Fi = 22[F: + (2 x (1) T2 (-17F) + (-1)'f(0)]
where, f(t) = > Figu(t)

for,i=1,2,---'m
(15)

111. UIO design procedure
1. Coordinate transformation method
Let us consider a linear time-invariant dynamic system rep-

resented as follows.
z(t) = Az(t) + Bu(t) + Dd(t)

y(t) = Cx(t)

where, r € R*,u € R’,y € R™ and d € R? are the
state, input, outputs and the unknown input vectors of the sys-
tem, respectively. In (16), the ranks of the matrix D and C
are p(D) = q and p(C) = m, respectively. It is well known
that if m > gq is satisfied, then there exists a similar transfor-
0
Iq

(16)

mation matrix 77 such as Ty 'p = ': and (16) can be

represented as follows.

i (t) = AL121(t) + AfL23(t) + Blu(t)
£3(t) = Ab 23 (t) + Asx3(t) + Biu(t) +d(t) (A7)
y(t) = Crzi(t) + Cax3(t)

x*
where, z = Thz" =T} [ ! ], z3 € R 9z} ¢ RY,
Z2

* * B*
T—IAT — 11 i2 ] , T-IB — 1 ,
! ' [ A3 A3 ! B3
and CTy = [ Cf C3 ]

By defining a variable such as z(¢t) = 4@3(¢) — Biu(t) —
d(t) — A3,x5(t) in (17), (18) can be obtained.

ct ¢ i o~I. 0 | [ @ () } —0
. : y*(t)
Ay 0 1 0 - (18)
t
where, y* (t) = { th; } and z(t) = A5z} (t)

It is obvious that the matrix pencil I
A3 0 0
in (18) always guarantees the full row rank m + ¢. Thus, the
nonsingular transformation matrix Tp € R(MTOX(m+9) which
satisfies (19) exists at any time.
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7. | €1 G i —In 0
A3 0 0 -1, (19)
M 0 © N N,

Mo Iq N3 Ny

Using a transformation matrix 7%, (18) can be represented as
(20) and (21).

(M + N2 A3 )i (t) + Nuy(t) =0 (20)

z3(t) = —(Ma + N1A3)zi(t) — Nsy(t) (2D

Let us substitute 5(¢) in (17) by (21) and define a variable

such as 3(t) = —N1y(t) in (20). As the result of the previous,

we can deduce the following (n — q)th order dynamic system
(22) which consists of z7 (t) only.

21 (t) = A% (t) + Biu(t) — ATy Nay(t)
§(t) = (M1 + N2 A3 )z5 (t) 22)
where, A° = A}, — Al My — AT, N4 Ay

If the dynamic system (16) is observable, then (22) also guar-
—slp + A
C

antees the observability. It means that if p (

~8Ih_g+ A°
, =n— , > 0.
n, then < M+ NoA > n—gq for Vs € C, Re(s) > 0

—sln_q+ AL Al
—sl,+ A a
Proof:p< sl C+ >=p c: Cs

by pre-multiplying — A7z Nag to the 3-rd row and adding to the
1-st row

—sln_q + Al1 — AlaNpo A, Al

=p Ct C3
A3y 0
~8ln_g+ A1 — ATaNpo A3, Al
= p M1 0
M,y I,

by pre-multiplying — A3, to the 3-rd row and adding to the 1-st
row

—8ln—q + Al; — A1 N4AS — AT, M2 0

=p M, 0
M- I,
~8ln_g + Ay — A1oNLAS — AT M2 0
= p M1 + NQAEl Iq
Mz A3 I
_ —8ln_q+ A° _
—q+P<M1+N2A;1>—n
-8l g + A°
Therefore, e =n-
erefore M + N2 A3, ) n—q

forVs € C, Re(s) > 0.

2. Algebraic UIO design procedure

It is obvious that (22) is a convenient form to design a
Luenberger-type observer. To design an algebraic observer for
(22), let us represent (22) by using a BPF expansions.

S XL gu(t) = A YT X ¢i(t)
+B S Uigi(t) — AaNs 3 Yagi(t)  (23)
T YiGi(t) = (Mo + NaA3) S X, ¢4(t)

&) = 307 X1, ¢4(t)
oi(t) > 3, X1, ¢4(t)
u(t) > Y o Usgi(t) 24)
y(t) = 3072, Yagu(t)
§(t) = 1, Yagi(t)

Algebraic Luenberger-type observer for (23) can be designed
as following

L Wagi(t) = A Wigi(t) + B Yo, Usgi(t)

~ Al Ns S Yaohs(t) + L (D07, Yaghs(2)

~(M1 + N2 A3) Y7, Wi¢i(t))
(25)
Determine an error function as following (26).

ety => WiH)gilt) - >_Xi,0ult)  (6)
i=1 i=1

From (23) and (25), (27) is derived directly.

é(t) = ?;1 Wl(t)¢1(t) - :Zl X;l(ﬁl(t)
= [A° — L(M1 + N2A31)]es(t)

27

1t is easy to know that if the observer gain matrix L in (27)
is chosen to have the eigen values of the matrix [A° — L(M; +
N2A3;)] is negative assignment, proposed algebraic observer
can be converged to the actual state of (23) at £ — oo. By using
arelation Y- Yigi(t) = —N1 Y- Yigi(t), (25) can be
represented as (28).

Y Wit)gs(t) = F 372, Wi(t)oi(t)
+GYT Uit)di(t) + HY ™ Yi(t)ea(t)
where, F = [A° — L{M: + N2A31)],G = Bl
sand H = —(A72 N3 + LN1)

Now, the main problem of the algebraic observer equa-
tion (28) is how to obtain the BPF coefficients, W =
[Wi, Wy, --- W,,] . We note that the recursive algorithm
which is deduced by using a proposed BPF differential oper-
ation has been summarized as follows.

step 1 : Obtain the first BPF expansion equation from (28)
Wi = FW; + GU; + HY,
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step 2 : Adopting (14) for Wy
W, = Qt-rf"[wl —w(0)]

where, w(0) is an initial value of the observer

step 3 : The first BPF coefficient W; which is obtained from
step 1 and step 2 sets to be equal.

—1

Wi = (1-3£F)
(29)
x [w(O) +gu; + %HYIJ

2m

step 4 : Sum of the i-th and (i+1)th BPF coefficient of (28)
Wiri +W;
=F(Wit1 + Wo) + G(Uip1 +U)) + H(Yiq1 + Y3)

step 5 : Redo like step 2 for (14)
Wit +W; = zt—;"[WiH - W]

step 6 : Redo like step 3 for W;1 by using step 4 and step S

-1
Wi+1=( _-;—T%F) X[(I—I—%F)Wiﬁ-
F2LGUi + W) + sLH(Yi1 + Yl)] (30)
for,i=1,2,---,m—1
Therefore, the BPF coefficients W = [W1, Wy, -+, W, ],
can be obtained recursively from (29) and (30). Finally, from

(21), estimated states of the system (16) can be obtained by state
reconstruction such as (31).

f)(t) = T1 X
Ziﬂ;l Waigi(t)
~(M> + NaA31) 3770, Wida(t) ~ N3 307, Yaohi(t)

(31)

From (17), if {(¢) ~ Y " | Wig;(t) in (31), an equation for

unknown input estimation is deduced as follows.
d(t) = —(M, + NaA3,)C(t) — Nag(t)
—(A3y — A3o (M2 + Ny A31))C(2E) (32)
+A33Nsy(t) — B3u(t)

In (32), unknown input estimation can be achieved by addi-
tional differential of system outputs. By using a BPF expan-
sions and its differential operation (14), it can be eliminated as
an algebraic form (33).

d(t) = —(Mz + Nadsy) Y7, Wigh(2)
—N3 37 Yaigi(t)
—(A3) — A3 (M + NeA31)) >0 W)
+ASNa S Yadi(t) — B S, Uidh(t)

d(t) = QY7 Wigslt) + R Yai(t)
+5 Z:l1 U1¢‘b(t) — N3 Z’Lmzl ‘7,451(25)

where, Q@ = [~ (M2 + Ny A5 )F — A3, (33)
+ A (My + Ny A3 )],
R = —[(Ms + NyA3)H — A3, N3,
and S = —[(M2 + N4A3:)G + B3|

In (33), it is easy to know that the differential of system out-
put can be from (34).

Y1 =22[Y, —y(0)
Yii1 = %l’fl[YiH -Yi]-Y; (34
for,i=23,---,m—1
IV. Examples
1. Example 1
Let us consider the following linear time-invariant dynamical

systems with unknown inputs[3], [5]. For the convenience of
the simulation, u(t) is omitted without loss of generality.

-2 -2 0 10
=1 0 0o 1 |z@®)+]| o0 1 |d@
0 -3 -4 0 0

mw=[; ’ é]mw
(35

From the previous UIO design procedure, the coordinate
transformation matrices 7 and T3 are determined as follows.

0 10 0001
Ti=]0 0 1 tandTy= 36)
10 0 1 0 0 O

0100
The observer gain is chosen such as L = [ 1 1 ]and the

derived algebraic observer equation is as follows.

iwi¢i(t) = —4ZWi¢i(t) + [ 0 -3 ] ZYi¢i(t)
=1 i=1 i=1

(37
Derived recursive formula for the algebraic observer equation
(37) are as follows

Wi=[0 -0125]Y,
Wi =0667TW; + [ 0 —0.125 | Y; (38)

for,i=1,2,---,m—1
And an algebraic equation for unknown inputs estimation is
as follows.

d(t) = [ _i } L Wagi(t) + [ (2) g ] o Yagu(t)

1 0 m o
(39)



Transactions on Control, Automation, and Systems Engineering

In this examplel, we assume that d(t) = [ Z ] and choose

t; = 10sec. and m = 100.

Figure 3 and 4 are the comparison of the unknown inputs es-
timation between the additional differentiator is used in MAT-
LAB SIMULINK and the proposed algebraic method. In the
figures, we show that the proposed algebraic method is advan-
tageous and effective than the other non-algebraic estimation.

— BPF
--- Runge-Kutta
— - Euler E

=5

Estimated unkown input d1(t)

0 . . . . . , . . .
a 1 2 3 4 5 B 7 8 9 10
time(sec.)
Fig. 1. Actual and estimated state z1(¢).
; — BPF
— - Real state 4
~-- Runge-Kutta
= — - Euler
[2p]
=
D
a
G .
T
Q
k5]
£ ]
®
@
T -
o
«©
©
3
©
<
& 7 8 9 1

time(sec}

Fig. 2. Actual and estimated state x3(¢).

2. Example 2

Considered linear time invariant dynamical system[5] is as
follows.

-1 -1 0 1
A= 0 -1 1 1,D=1{0
0o 0 -1 0 (40)
1 0 1
yand C = [ 00 1 ]

Transformation matrices and observer gain matrix are as fol-
lows.
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I\ --- Runge-Kutta
B 1 \ — - Euler B
w |
ai |l
=g
pel
3
E 4 {
z
£
53 ]
D
2z
£2 1
=
w
1k E
ol . . . . . . . \
0 1 2 3 4 5 6 7 8 9 10
time(sec )
Fig. 3. Estimated unknown input d1 (t) = 5.
4 T . T T : —
. — BPF
--- Runge-Kutta
— — Euler
33'5 B
g
3
<
o=
z
g
=25
©
L
[u)
E
a2 |
15 ! . . .
0 1 2 3 4 5 6 7 8 9 10
time(sec.)
Fig. 4. Estimated unknown input da(t) = 3.
0 0 1
0 b
Ti=T=1]10 1 0|,L= 0 1 41
1 0 0

By using a proposed algebraic observer design procedure, de-
rived algebraic observer equation is as follows.

iy Wagi(t) = [ 6 _0 J Do Wigi(t)
05 0 -1 42)
+ |: 0 1 ] Z:ll Yl(’bl(t)
Wi () + 207 Y, 6i(t)
() = g W2, ¢4(t) (43)
2221 wli ¢z (t)

Equation (44) is a derived unknown input estimation equation
as an algebraic form.

dt)y=[5 1], Wihi(t)

m m o 44)
+ [ 1 -5 ] i=1 Yi¢i(t) - Zi:1 Y1i¢i(t)
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In this example 2, we assume that d(¢) = 3 and choose ty =

3sec. and m = 100.
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— BPF
—~ Euler

Actual and estimated state x1(t)

Actual and estimated state x2(t)

4 T T T T T T T T T
3 -
- BPF
2 — - Real state E
--- Runge-Kutta
— - Euler
4 ]
U 4
2 ]
3 ; L : L L L . L .
0 1 2 3 4 5 5 7 8 9 10
time(sec.}
Fig. 5. Actual and estimated state z1(t).
3 T T T T T T T T T
250 — BPF i
. — - Real state
2R --- Runge-Kutta | |
' — - Euler
15[ 1
13 \, i
\
05F . 4

time(sec.)

Fig. 6. Actual and estimated state z2(%).

T

--- Runge-Kutta

=3

Estimated unknown input d{t)

time(sec.)

Fig. 8. Estimated unknown input d(t) = 3.

V. Conclusions

This paper deals with an algebraic approach to design an
unknown inputs observer(UIO) by using a block pulse func-
tion(BPF) expansions and its differential operation. In the UIO
design procedure, some coordinate transformation method is
adopted to decouple the unknown inputs from the system. And
the system in which the unknown inputs are decoupled is used
directly to design an algebraic Luenberger-type observer to esti-
mate the state vectors. But, if one wants to obtain the unknown
inputs estimation from the system, it needs additional differen-
tial of the system outputs like the other methods [3], [4], [5], [6].
Therefore, this paper introduces an improved BPF’s differen-
tial operation which can alleviate such problem in an algebraic
form. Simulation for arbitrary numerical examples which are
carried out using a MATLAB are presented to check on the va-
lidity of the proposed method. The least square error of the es-
timated states and unknown inputs for the actual values are pre-
sented in table 1 and 2. It is obvious that the proposed method
in this paper is advantageous for the unknown input estimation
than the other method from the table 1 and 2.

Table 1. Comparison of estimation errors for each method (Ex-

Actual and estimated state x3(t)

— BPF

— - Real state
--- Runge-Kutta
— ~ Euler

time(sec.)

Fig. 7. Actual and estimated state z3(t).

ample 1).

Proposed BPF Runge-Kutta Euler
z1(t) | 1.1136 x1072 | 1.1256x1072 | 1.4158x1072
@3(t) | 1.1136 x1072 | 1.1256x1072 | 1.0216%x1072
di(t) | 2.3316 x1072 | 4.9827x1072 | 5.0072x1072
do(t) | 1.1199 x1072 | 1.5273x1072 | 1.6683x102

Table 2. Comparison of estimation errors for each method (Ex-

ample 2).

Proposed BPF Runge-Kutta Euler
z1(t) | 4.5648 x1072 | 4.6358%x1072 | 3.8955x1072
z2(t) | 6.7226 x1072 | 6.7110x1072 | 7.0168x10 2
z3(t) | 4.5648 x1072 | 4.6358x1072 | 3.8780x1072
d(t) | 3.1983 %10~ | 3.2719%x10"! | 3.4957x107!
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